几何

几何表示

隐式表示

不给出点的坐标,给数学表达式

优点 可以很容易找到点与几何之间的关系

缺点 找某特定的点很难

更多的隐式表示方法

Constructive Solid Geometry 、Distance Functions 、Level Set Methods 、Fractals

显示表示

直接给出点或者参数映射

优点 找某一点很容易

缺点 判断点与几何之间的关系很困难

更多的显式表示方法

Triangle meshes 、Bezier surfaces 、Subdivision surfaces 、NURBS 、Point clouds。

其中需要强调的一点在图形学中,显示存储在文件的格式是wavefront object file。

其中,\(v:\)顶点、\(v_n:\)法线、\(v_t:\)纹理坐标、\(f\)参数详解:(顶点坐标 纹理坐标 法线坐标)

曲线与曲面

贝塞尔曲线(Bézier Curves)

贝塞尔曲线是计算机图形图像造型的基本工具,是图形造型运用得最多的基本线条之一,是依据四个位置任意的点坐标绘制出的一条光滑曲线。

代数表示

主要是通过反复迭代实现,循环体是每两个点之间的通过特定的比例 \(t\) ,得到一个新的点;终止条件是最后只有一个点。

贝塞尔曲线性质

1. 端点性质

顶点P0和Pn分别位于曲线段的起点和终点上,曲线不通过其他控制点,即“逼近”而非“插值”。

2. 一阶导数

  • Bernstein基函数的一阶导数为
  • Bezier曲线的一阶导数为

Bezier曲线的起点和终点处的切线方向和特征多边形的第一条边及最后一条线的走向一致。

3. 几何不变性

指某些几何特性不随坐标变换而变化的特性。Bezier曲线的形状仅与控制多边形各顶点的相对位置有关,而与坐标系的选择无关。

4. 凸包性

Bezier曲线落在控制点Pi构成的凸包内

分段贝塞尔曲线

当控制贝塞尔曲线的控制点多的时候,可以通过分段生成贝塞尔曲线来实现。

贝塞尔曲线拼接

贝塞尔曲面

几何操作

曲面的几何操作主要有:曲面细分、曲面简化、曲面正则化。

曲面细分

曲面细分主要有以下两个主要的步骤:1.创建更多的面(顶点) 2.移动面(顶点)的位置

Loop Subdivision

Loop Subdivision主要是针对三角形曲面的细分

1. 创建更多的面(顶点)

2. 移动顶点的位置

Catmull

奇异点:与点相连接的边不为4的点

face point:每个面中的点,用周围点的平均值代表

曲面简化

【Notes_8】现代图形学入门——几何(基本表示方法、曲线与曲面)的更多相关文章

  1. 30分钟入门Java8之方法引用

    30分钟入门Java8之方法引用 前言 之前两篇文章分别介绍了Java8的lambda表达式和默认方法和静态接口方法.今天我们继续学习Java8的新语言特性--方法引用(Method Referenc ...

  2. 【Notes_1】现代图形学入门——计算机图形学概述

    跟着闫令琪老师的课程学习,总结自己学习到的知识点 课程网址GAMES101 B站课程地址GAMES101 课程资料百度网盘[提取码:0000] 计算机图形学概述 计算机图形学是一门将模型转化到屏幕上图 ...

  3. 用OpenGL进行曲线、曲面的绘制

    实验目的 理解Bezier曲线.曲面绘制的基本原理:理解OpenGL中一维.二维插值求值器的用法. 掌握OpenGL中曲线.曲面绘图的方法,对比不同参数下的绘图效果差异: 代码1:用四个控制点绘制一条 ...

  4. NURBS 曲线和曲面参数化

    NURBS 曲线和曲面参数化 什么是参数? 参数是曲线或曲面上点的唯一数值(类似于坐标).通过参数,可以沿曲线的长度方向引用特定点.参数值越大,点在曲线方向上的距离越远. 就像空间中的点具有三个维度( ...

  5. OpenGL超级宝典笔记——贝塞尔曲线和曲面(转)

    http://my.oschina.net/sweetdark/blog/183721 参数方程表现形式 在中学的时候,我们都学习过直线的参数方程:y = kx + b;其中k表示斜率,b表示截距(即 ...

  6. 【Notes】现代图形学入门_02

    跟着闫令琪老师的课程学习,总结自己学习到的知识点 课程网址GAMES101 B站课程地址GAMES101 课程资料百度网盘[提取码:0000] 光栅化 着色(Shading) 在图形学中,着色的定义可 ...

  7. Node.js进阶:5分钟入门非对称加密方法

    前言 刚回答了SegmentFault上一个兄弟提的问题<非对称解密出错>.这个属于Node.js在安全上的应用,遇到同样问题的人应该不少,基于回答的问题,这里简单总结下. 非对称加密的理 ...

  8. 图形学入门(3)——区域填充算法(region filling)

    继续图形学之旅,我们已经解决了如何画线和画圆的问题,接下来要解决的是,如何往一个区域内填充颜色?对一个像素填充颜色只需调用SetPixel之类的函数就行了,所以这个问题其实就是:如何找到一个区域内的所 ...

  9. 图形学入门(1)——直线生成算法(DDA和Bresenham)

    开一个新坑,记录从零开始学习图形学的过程,现在还是个正在学习的萌新,写的不好请见谅. 首先从最基础的直线生成算法开始,当我们要在屏幕上画一条直线时,由于屏幕由一个个像素组成,所以实际上计算机显示的直线 ...

随机推荐

  1. 文本处理三剑客简介(grep、awk、sed)

    本章内容: 命令 描述 awk 支持所有的正则表达式 sed 默认不支持扩展表达式,加-r 选项开启 ERE,如果不加-r 使用花括号要加转义符\{\} grep 默认不支持扩展表达式,加-E 选项开 ...

  2. linux系统rpm和yum软件包管理

    软件安装方式总结 安装软件方式有如下几种: 方式1:编译安装 将源码程序按照需求进行先编译,后安装 缺点:装过程复杂,而且很慢 优点:安装过程可控,真正的按需求进行安装(安装位置.安装的模块都可以选择 ...

  3. java 石头剪子布游戏

    源代码 StoneGame.java 1 import java.io.BufferedReader; 2 import java.io.IOException; 3 import java.io.I ...

  4. Python3.9.1中如何使用split()方法?

    本文出自:lunvey,半路出家学编程之Python.split()方法定义于str类中,str类大家都知道是python内置定义的一个字符串类. split()默认两个参数,分别是分隔符和分隔数量, ...

  5. HDU5732 Subway【树重心 树哈希】

    HDU5732 Subway 题意: 给出两棵大小为\(N\)的同构树,要求输出对应的节点 \(N\le 10^5\) 题解: 由于重心最多只有两个,找到重心之后以重心为根进行树哈希,找到相同哈希值的 ...

  6. AtCoder Beginner Contest 176 E - Bomber (思维)

    题意:有一张\(H\)x\(W\)的图,给你\(M\)个目标的位置,你可以在图中放置一枚炸弹,炸弹可以摧毁所在的那一行和一列,问最多可以摧毁多少目标. 题解:首先我们记录某一行和某一列目标最多的数目, ...

  7. 【bzoj 2467】[中山市选2010]生成树(数论--排列组合)

    题目:有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角形圈的中心的圈上有 ...

  8. 母函数 <普通母函数(HDU - 1028 ) && 指数型母函数(hdu1521)>

    给出我初学时看的文章:母函数(对于初学者的最容易理解的) 普通母函数--------->HDU - 1028 例题:若有1克.2克.3克.4克的砝码各一 枚,能称出哪几种重量?各有几种可能方案? ...

  9. Codeforces Round #646 (Div. 2) B. Subsequence Hate (思维,前缀和)

    题意:给你一个只含有\(0\)和\(1\)的字符串,每次操作可以将\(0\)改成\(1\)或\(1\)改成\(0\),问最少操作多少次,使得子序列中不含有\(010\)和\(101\). 题解:仔细想 ...

  10. 1.PowerShell DSC概述

    什么是PowerShell DSC DSC 是一个声明性平台,用于配置.部署和管理系统. PowerShell PowerShell 是构建于 .NET 上基于任务的命令行 shell 和脚本语言. ...