【NOI2010】超级钢琴 题解(贪心+堆+ST表)
题目大意:求序列内长度在$[L,R]$范围内前$k$大子序列之和。
----------------------
考略每个左端点$i$,合法的区间右端点在$[i+L,i+R]$内。
不妨暴力枚举所有左端点,找到以其为左端点满足条件的最大子序列。
用贪心的思想,这些序列一定是满足题意的。统计后将该序列删除。
但这样直接删除肯定会丢失一部分有用的序列。一些也在前$k$大范围内的序列可能跟删除部分有交集。
所以我们不妨设$maxi$指以$i$为左端点的子序列,以$maxi$为右端点时能取得最大值。从此处将原先的大区间$[i+L,i+R]$裂解成两个区间$[i+L,maxi-1]$和$[maxi+1,i+R]$。从这两个区间中再找较大的满足条件的序列。
维护显然用堆。设一个五元组$(v,i,l,r,w)$表示以$i$为左端点,右端点在$[i+L,i+R]$内时,能找出以$w$为右端点的最大值为$v$的子序列。以$v$作为关键字,建立大根堆维护即可。
最后一个问题就是查找。我们不妨预处理出前缀和,用前缀和查找子序列的和。最大值用$ST$表维护。
代码:
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=;
int f[N][],pos[N][];
int n,k,l,r,op;
long long ans;
int maxn,maxi;
struct node
{
int v,i,l,r,w;
}t,tmp;
bool operator <(const node &a,const node &b)
{
return a.v<b.v;
}
priority_queue<node> q;
inline void RMQ(int l,int r)
{
int opt=log2(r-l+);
if (f[l][opt]>=f[r-(<<opt)+][opt]) maxn=f[l][opt],maxi=pos[l][opt];
else maxn=f[r-(<<opt)+][opt],maxi=pos[r-(<<opt)+][opt];
}
signed main()
{
memset(f,,sizeof(f));
f[][]=;
scanf("%lld%lld%lld%lld",&n,&k,&l,&r);
op=log2(n);
for (int i=;i<=n;i++)
{
scanf("%lld",&f[i][]);
pos[i][]=i;
f[i][]+=f[i-][];
}
for (int t=;t<=op;t++)
for (int i=;i<=n;i++) if (i+(<<(t-))->n) break;
else
{
if (f[i][t-]>=f[i+(<<(t-))][t-]) f[i][t]=f[i][t-],pos[i][t]=pos[i][t-];
else f[i][t]=f[i+(<<(t-))][t-],pos[i][t]=pos[i+(<<(t-))][t-];
}
for (int i=;i<=n-l+;i++)
{
RMQ(i+l-,i+min(n-i,r-));
t.v=maxn-f[i-][],t.i=i,t.l=i+l-,t.r=i+min(n-i,r-),t.w=maxi;
q.push(t);
}
while(k--)
{
t=q.top();
q.pop();
ans+=t.v;
if (t.w>t.l)
{
RMQ(t.l,t.w-);
tmp.v=maxn-f[t.i-][],tmp.i=t.i,tmp.l=t.l,tmp.r=t.w-,tmp.w=maxi;
q.push(tmp);
}
if (t.w<t.r)
{
RMQ(t.w+,t.r);
tmp.v=maxn-f[t.i-][],tmp.i=t.i,tmp.l=t.w+,tmp.r=t.r,tmp.w=maxi;
q.push(tmp);
}
}
printf("%lld",ans);
return ;
}
【NOI2010】超级钢琴 题解(贪心+堆+ST表)的更多相关文章
- BZOJ_2006_[NOI2010]超级钢琴_贪心+堆+ST表
BZOJ_2006_[NOI2010]超级钢琴_贪心+堆+ST表 Description 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的 音乐 ...
- P2048 [NOI2010]超级钢琴(RMQ+堆+贪心)
P2048 [NOI2010]超级钢琴 区间和--->前缀和做差 多次查询区间和最大--->前缀和RMQ 每次取出最大的区间和--->堆 于是我们设个3元组$(o,l,r)$,表示左 ...
- BZOJ2006:[NOI2010]超级钢琴——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2006 https://www.luogu.org/problemnew/show/P2048#su ...
- [NOI2010]超级钢琴(RMQ+堆)
小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号为1至n.第i个音符的美妙度为Ai,其中Ai可正可负 ...
- [NOI2010] 超级钢琴 - 贪心,堆,ST表
这也算是第K大问题的套路题了(虽然我一开始还想了个假算法),大体想法就是先弄出最优的一批解,然后每次从中提出一个最优解并转移到一个次优解,用优先队列维护这个过程即可. 类似的问题很多,放在序列上的,放 ...
- 洛谷P2048 [NOI2010]超级钢琴 题解
2019/11/14 更新日志: 近期发现这篇题解有点烂,更新一下,删繁就简,详细重点.代码多加了注释.就酱紫啦! 正解步骤 我们需要先算美妙度的前缀和,并初始化RMQ. 循环 \(i\) 从 \(1 ...
- BZOJ 2006 NOI2010 超级钢琴 划分树+堆
题目大意:给定一个序列.找到k个长度在[l,r]之间的序列.使得和最大 暴力O(n^2logn),肯定过不去 看到这题的第一眼我OTZ了一下午... 后来研究了非常久别人的题解才弄明确怎么回事...蒟 ...
- Bzoj 2006: [NOI2010]超级钢琴 堆,ST表
2006: [NOI2010]超级钢琴 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 2222 Solved: 1082[Submit][Statu ...
- [BZOJ2006][NOI2010]超级钢琴(ST表+堆)
2006: [NOI2010]超级钢琴 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 3679 Solved: 1828[Submit][Statu ...
随机推荐
- sql 增加修改表格属性字段
1.修改字段默认值 alter table 表名 drop constraint 约束名字 ------注解:删除表的字段的原有约束 alter table 表名 add constraint 约束名 ...
- windows dos 批量重命名文件
描述 在工作中经常出现 在同一目录下有一些 很多相同扩展名的文件但是名字看起来很乱各不同,我们想将它们统一重命名一下统一的格式,如果一个个去改名字太麻烦了. 这里我门就可以使用windows下 dos ...
- 数据可视化之powerBI技巧(三)这个Power BI技巧很可爱:利用DAX制作时钟
周末放松一下,给大家分享一个小技巧,仅利用DAX制作一个简易的时钟. 时钟效果如下: 这个时钟的制作只需一个度量值,你信吗? 事实上确实如此,制作步骤介绍如下: 1,新建参数,生成一个数字序列作为小时 ...
- 使用OpenCV对图片进行特征点检测和匹配(C++)
背景 最近从不同网站下载了非常多的动漫壁纸,其中有一些内容相同,但是大小.背景颜色.色调.主人公的位置不同(例子如下).正因为如此,基础的均方误差.直方图检测等方法很难识别出这些相似的图片. 思路 O ...
- bzoj3673可持久化并查集 by zky&&bzoj3674可持久化并查集加强版
bzoj3673可持久化并查集 by zky 题意: 维护可以恢复到第k次操作后的并查集. 题解: 用可持久化线段树维护并查集的fa数组和秩(在并查集里的深度),不能路径压缩所以用按秩启发式合并,可以 ...
- bzoj2295【POJ Challenge】我爱你啊*
bzoj2295[POJ Challenge]我爱你啊 题意: 求一个字符串中有多少个"luvletter"(不包括引号).字符串长度≤100000. 题解: 连kmp都不用…… ...
- CodeChef Sum of distances(分治)
CodeChef Sum of distances(分治) 题目大意 有一排点,每个点 i 向 \(i + 1, i + 2, i + 3\) 分别连价值为 \(a_i,b_i,c_i\) 的有向边, ...
- 使用pycharm、跳板机连接内网服务器
使用pycharm.跳板机连接内网服务器 接手实验室服务器后,大部分同学在GPU集群上跑程序都是直接在ssh界面上跑,这里想着通过pycharm通过跳板机来连接服务器. 总体就是实验室服务器仅限内网访 ...
- 如何在项目中封装api
一般在项目中,会有很多的api请求,无论在vue,angular,还是react中都应该把接口封装起来,方便后期的维护. 1.新建一个api文件 我们可以在项目的分目录下创建一个api文件夹,在这里面 ...
- Ethical Hacking - GAINING ACCESS(17)
CLIENT SIDE ATTACKS - Backdooring exe' s Download an executable file first. VEIL - FRAMEWORK A backd ...