题意:

已知\(f(0)=1,f(n)=(n\%10)^{f(n/10)}\),求\(f(n)\mod m\)

思路:

由扩展欧拉定理可知:当\(b>=m\)时,\(a^b\equiv a^{b\%\varphi(m)+\varphi(m)}\mod m\),那么我们可以通过这个式子直接去递归求解。

在递归的时候每次给下一个的模数都是\(phi(mod)\),那么我们求出来之后,怎么知道要不要再加\(phi(m)\)?

我们可以在每次返回的时候用一个特殊的快速幂返回正确的值。然后每次特判返回值的时候都要一样:

a = mod? a % mod + mod : a

ll ksm(ll a, ll b, ll mod){
ll ret = 1;
while(b){
if(b & 1) ret = ret * a;
if(ret >= mod){
ret = ret % mod + mod;
}
a = a * a;
if(a >= mod){
a = a % mod + mod;
}
b >>= 1;
}
return ret;
}

代码:

#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
const int maxn = 1e5 + 5;
const int MAXM = 3e6;
const ll MOD = 998244353;
const ull seed = 131;
const int INF = 0x3f3f3f3f; ll euler(ll n){
ll res = n, a = n;
for(int i = 2; i * i <= a; i++){
if(a % i == 0){
res = res / i * (i - 1);
while(a % i == 0) a/= i;
}
}
if(a > 1) res = res / a * (a - 1);
return res;
}
ll ksm(ll a, ll b, ll mod){
ll ret = 1;
while(b){
if(b & 1) ret = ret * a;
if(ret >= mod){
ret = ret % mod + mod;
}
a = a * a;
if(a >= mod){
a = a % mod + mod;
}
b >>= 1;
}
return ret;
}
ll f(ll a, ll mod){
if(a == 0) return 1 >= mod? 1 % mod + mod : 1;
if(mod == 1) return a >= mod? a % mod + mod : a; //剪枝
ll phm = euler(mod);
ll b = f(a / 10, phm);
return ksm(a % 10, b, mod);
}
int main(){
int T;
scanf("%d", &T);
while(T--){
ll n, m;
scanf("%lld%lld", &n, &m);
printf("%lld\n", f(n, m) % m); //这里要取模
}
return 0;
}

HDU2837 Calculation(指数循环节)题解的更多相关文章

  1. hdu 2837 Calculation 指数循环节套路题

    Calculation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  2. HDU 4335 What is N?(指数循环节)题解

    题意: 询问有多少数\(n\)满足\(n^{n!}\equiv b\mod p \land\ n\in[1,M]\),数据范围:\(M\leq2^{64}-1,p\leq1e5\) 思路: 这题显然要 ...

  3. hdu 5895 Mathematician QSC 指数循环节+矩阵快速幂

    Mathematician QSC Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  4. 指数循环节&欧拉降幂

    证明:https://www.cnblogs.com/maijing/p/5046628.html 注意使用条件(B的范围) 例题: FZU1759 HDU2837 ZOJ1674 HDU4335

  5. 指数循环节 求A的B次方模C

    phi(c)为欧拉函数, 欧拉定理 : 对于互质的正整数 a 和 n ,有 aφ(n)  ≡ 1 mod n  . A^x = A^(x % Phi(C) + Phi(C)) (mod C) (x & ...

  6. HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)

    传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...

  7. HDU 1358 Period(KMP+最小循环节)题解

    思路: 这里只要注意一点,就是失配值和前后缀匹配值的区别,不懂的可以看看这里,这题因为对子串也要判定,所以用前后缀匹配值,其他的按照最小循环节做 代码: #include<iostream> ...

  8. HDU 3746 Cyclic Nacklace(KMP+最小循环节)题解

    思路: 最小循环节的解释在这里,有人证明了那么就很好计算了 之前对KMP了解不是很深啊,就很容易做错,特别是对fail的理解 注意一下这里getFail的不同含义 代码: #include<io ...

  9. 牛客多校第九场 && ZOJ3774 The power of Fibonacci(二次剩余定理+斐波那契数列通项/循环节)题解

    题意1.1: 求\(\sum_{i=1}^n Fib^m\mod 1e9+9\),\(n\in[1, 1e9], m\in[1, 1e4]\) 思路1.1 我们首先需要知道斐波那契数列的通项是:\(F ...

随机推荐

  1. Java运算符概要与数学函数

    运算符概要 在Java中,使用算术运算符+,-,*,/表示加减乘除运算,当参与/的运算的两个操作数都是整数时,表示整数除法,否则,表示浮点除法.整数的求余操作(有时称为取模),用%表示,例如,15/2 ...

  2. 1V升3V芯片,1V升3.3V芯片,大电流的,低功耗

    一般来说,1V的电压实在很低了,即使是干电池的话,再1V时,也是基本属于没电状态了.还有一种是干电池输出电流大时,也会把干电池的电压从1.5V拉低到1V左右. 更多的是客户对于1V时要能升到3V或者3 ...

  3. 迈凯伦765LT/600LT/720S/650S/570S维修手册电路图Mclaren车间手册接线图

    全套迈凯伦维修手册电路图Mclaren车间手册线路图:语言:English,German,French,Spanish,Chinese,Japanese.McLaren迈凯伦新GT维修手册电路图零配件 ...

  4. django ajax应用

    ajax: 什么是ajax,有什么作用: 以前我们在页面向后台提交数据的时候都是使用from表单,这样的提交会在提交的时候将整个页面全部刷新,如果你在填写表单的时候提交之后发现某个数据不对,但是你已提 ...

  5. c#使用谷歌身份验证GoogleAuthenticator

    此功能相当于给系统加了个令牌,只有输入对的一组数字才可以验证成功.类似于QQ令牌一样. 一丶创建最核心的一个类GoogleAuthenticator 此类包含了生成密钥,验证,将绑定密钥转为二维码. ...

  6. Spark底层原理详细解析(深度好文,建议收藏)

    Spark简介 Apache Spark是用于大规模数据处理的统一分析引擎,基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量硬件之上, ...

  7. 网络Devops探索与实践 流程管理分析师

    https://mp.weixin.qq.com/s/OKLiDi78uB8ZkPG2kUVxvA 网络Devops探索与实践 王镇 鹅厂网事 2020-09-23  9月16日举办的2020 ODC ...

  8. 三路握手 三报文握手 TIME_WAIT three way handshake three message handshake

    UNIX网络编程卷1:套接字联网API(第3版) 第2章 传输层:TCP.UDP和SCTP 2.4 TCP TCP不能被描述成100%可靠的协议 数次重传失败,则放弃 数据的可靠递送和故障的可靠通知 ...

  9. 。SLI,Service Level Indicator,服务等级指标,其实就是我们选择哪些指标来衡量我们的稳定性。而 SLO,Service Level Objective,服务等级目标,指的就是我们设定的稳定性目标,比如“几个 9”这样的目标。

    .SLI,Service Level Indicator,服务等级指标,其实就是我们选择哪些指标来衡量我们的稳定性.而 SLO,Service Level Objective,服务等级目标,指的就是我 ...

  10. Jaspersoft Studio报表设计

    1      开发工具 1.1  软件名称 名称:TIBCO Jaspersoft Studio 版本:6.0或以上,建议6.2.1 1.2  软件安装 免安装软件包,拷贝即可使用,建议放在D:盘或其 ...