动态规划
一直AC不了竟然是因为一厢情愿的多加了一个#!
  printf("Case #%d:\n",count);
----------------------------------------------------

1 #include<stdio.h>
#include<stdlib.h>
int num[];
int dp[]; int main()
{
int times;
scanf("%d",&times);
int length;
int count=;
while(times--)
{ scanf("%d",&length); int i=;
for(i=;i<length;i++)
scanf("%d",&num[i]);
dp[]=num[];
int dpmax=dp[];
int begin=,end=,maxbegin=,maxend=;
for(i=;i<length;i++)
{
if(dp[i-]+num[i]>=num[i])
{
dp[i]=dp[i-]+num[i];
end=i;
}
else
{
dp[i]=num[i];
begin=i;
end=i;
}
if(dp[i]>dpmax)
{
dpmax=dp[i];
maxbegin=begin;
maxend=end;
}
}
printf("Case %d:\n",count);
count++;
printf("%d %d %d\n",dpmax,maxbegin+,maxend+);
if(times>)
printf("\n");
}
return ;
}

HDOJ 1003的更多相关文章

  1. 最大子序列和 HDOJ 1003 Max Sum

    题目传送门 题意:求MCS(最大连续子序列和)及两个端点分析:第一种办法:dp[i] = max (dp[i-1] + a[i], a[i]) 可以不开数组,用一个sum表示前i个数字的MCS,其实是 ...

  2. HDOJ 1003 Max Sum(线性dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 思路分析:该问题为最大连续子段和问题,使用动态规划求解: 1)最优子结构:假设数组为A[0, 1 ...

  3. HDOJ(1003) Max Sum

    写的第一个版本,使用穷举(暴力)的方法,时间复杂度是O(N^2),执行时间超过限制,代码如下: #include <stdio.h> #define MAX_LEN 100000UL in ...

  4. Hdoj 1003.Max Sum 题解

    Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum ...

  5. hdoj 1003 学习思路

    基本解题思路:动态规划,不考虑穷举,分治. 根据网上,状态转移方程是:MaxSum[i] = Max{ MaxSum[i-1] + A[i], A[i]} 翻译公式:到当前位置i 时,最大子序列和为: ...

  6. HDOJ(HDU).1003 Max Sum (DP)

    HDOJ(HDU).1003 Max Sum (DP) 点我挑战题目 算法学习-–动态规划初探 题意分析 给出一段数字序列,求出最大连续子段和.典型的动态规划问题. 用数组a表示存储的数字序列,sum ...

  7. 【HDOJ】1003 Max Sum

    最开始使用递归DP解,stack overflow.化简了一些,复杂度为O(n)就过了. #include <stdio.h> int main() { int case_n, n; in ...

  8. hdoj薛猫猫杯程序设计网络赛1003 球球大作战

    思路: 二分,check函数不是很好写. 实现: 1. #include <bits/stdc++.h> using namespace std; typedef long long ll ...

  9. 杭电hdoj题目分类

    HDOJ 题目分类 //分类不是绝对的 //"*" 表示好题,需要多次回味 //"?"表示结论是正确的,但还停留在模块阶 段,需要理解,证明. //简单题看到就 ...

随机推荐

  1. OAuth2.0-3客户端授权放到数据库

    授权得客户端信息.授权码信息全都存在数据库 1.建表 官方给了个sql文件:https://github.com/spring-projects/spring-security-oauth/blob/ ...

  2. Nginx.conf参数配置详解

    Nginx的配置文件nginx.conf配置详解如下: user nginx nginx; #Nginx用户及组:用户 组.window下不指定 worker_processes 8; #工作进程:数 ...

  3. JavaScript calss语法糖

    JavaScript calss语法糖 基础知识 严格意义上来讲,在Js中是没有类这一概念的. 我们可以运用前面章节提到的构造函数来模拟出类这一概念,并且可以通过原型对象的继承来完美的实现实例对象方法 ...

  4. Spring Boot打包瘦身 Docker 使用全过程 动态配置、日志记录配置

    springBoot打包的时候代码和jar包打包在同一个jar包里面,会导致jar包非常庞大,在不能连接内网的时候调试代码,每次只改动了java代码就需要把所有的jar包一起上传,导致传输文件浪费了很 ...

  5. 【模式识别与机器学习】——最大似然估计 (MLE) 最大后验概率(MAP)和最小二乘法

    1) 极/最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”.例如,我们知道这个分布是正态分布,但是不知道均值和 ...

  6. C#LeetCode刷题-贪心算法

    贪心算法篇 # 题名 刷题 通过率 难度 44 通配符匹配   17.8% 困难 45 跳跃游戏 II   25.5% 困难 55 跳跃游戏   30.6% 中等 122 买卖股票的最佳时机 II C ...

  7. Spring Boot自定义错误视图

    Spring Boot缺省错误视图解析器 Web应用在处理请求的过程中发生错误是非常常见的情况,SpringBoot中为我们实现了一个错误视图解析器(DefaultErrorViewResolver) ...

  8. Linux expect用法介绍

    1.expect是linux中一个交互命令,一般在 /usr/bin/expect路径下,如果该路径未加入到环境中需要先添加,其作用场景常用于交互执行输入指令 常用命令: expect 获取上一命令执 ...

  9. 【HAOI2015】树上染色 - 树形 DP

    题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...

  10. C++ STL sort 函数的用法

    sort 在 STL 库中是排序函数,有时冒泡.选择等 $\mathcal O(n^2)$ 算法会超时时,我们可以使用 STL 中的快速排序函数 $\mathcal O(n \ log \ n)$ 完 ...