python机器学习实现人脸图片自动补全
人脸自动补全
关注公众号“轻松学编程”了解更多。
1、导包
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import time
from pandas import DataFrame,Series
#导入knn模型包
from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear_model import LinearRegression,Ridge,Lasso
%matplotlib inline
#绘图时可以显示中文
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
2、获取数据
#从模块自带的数据集中选取人脸数据
from sklearn.datasets import fetch_olivetti_faces
faces = fetch_olivetti_faces()
#images中存储了400张64*64像素的照片
faces.images.shape
3、数据建模
提取特征数据和目标数据
#data是images的样本特征形式数据
faces.data.shape
#目标数据分为了40类,每类分组10张照片(0-39)
np.unique(faces.target,return_counts=True)
#查看一张照片的数据维度
faces.images[0].shape
#显示一张照片
plt.imshow(faces.images[0])
#提取特征数据
train = faces.data
#提取目标数据
target = faces.target
4、拆分数据
拆分数据:将样本数据拆分成训练数据(80%)和测试数据(20%)。
- 训练数据:特征(左半张脸) 目标(右半张脸)
- 测试数据:特征(左半张脸) 目标(右半张脸)
X_train = []
X_test = []
y_train = []
y_test = []
for i in range(40):
#获取每种分类的10张照片数据
person_faces = train[target == i]
#将获取的每种分类中的每张照片切分成上、下半张脸两部分
for k in range(len(person_faces)):
face_data = person_faces[k]
#取照片左边
left_face = face_data.reshape(64,64)[:,:32].ravel()
#取照片右边
right_face = face_data.reshape(64,64)[:,32:].ravel()
#将每种分类中的前8张照片的左、右半张脸的数据分别添加到训练数据的集合中
if k < 8:
X_train.append(left_face)
y_train.append(right_face)
else:
#将每种分类中的后2张照片的左、右半张脸的数据分别添加到测试数据的集合中
X_test.append(left_face)
y_test.append(right_face)
6、模型评估
建一个DataFrame表格
df=DataFrame(data=None,
index=['k-近邻模型',
'普通线性回归(linear)',
'岭回归(Ridge)',
'lasso回归'],
columns=['评分','训练时间(s)','k值/alpha',])
knn模型
score = 0
k=0
for i in range(1,40):
knn = KNeighborsRegressor(n_neighbors=i)
start=time.time()
knn.fit(X_train,y_train)
end=time.time()
s=knn.score(X_test,y_test)
if score < s:
score = s
k=i
ktime = end-start
df.loc['k-近邻模型']=[score,ktime,k]
普通线性回归模型
score = 0
for i in range(1,10):
linear = LinearRegression()
start=time.time()
linear.fit(X_train,y_train)
end=time.time()
s=linear.score(X_test,y_test)
if score < s:
score = s
ktime = end-start
df.loc['普通线性回归(linear)']=[score,ktime,None]
岭回归模型
score = 0
alpha=0
for i in range(1,10):
ridge = Ridge(alpha=i)
start=time.time()
ridge.fit(X_train,y_train)
end=time.time()
s=ridge.score(X_test,y_test)
if score < s:
score = s
alpha=i
ktime = end-start
df.loc['岭回归(Ridge)']=[score,ktime,alpha]
lasso模型
score = 0
alpha=0
for i in range(1,10):
lasso = Lasso(alpha=i)
start=time.time()
lasso.fit(X_train,y_train)
end=time.time()
s=lasso.score(X_test,y_test)
if abs(score) < abs(s):
score = s
alpha=i
ktime = end-start
df.loc['lasso回归']=[score,ktime,alpha]
df
从表格可以看出knn模型和岭回归模型对预测结果较为精准。
7、绘图
#将预测的缺失部分和测试数据整合一起显示
plt.figure(figsize=(8,6))
#图片标题
title=['true_img','knn_img','linear_img','lasso_img','ridge_img']
#预测4张照片
for i in range(4):
#预测测试数据中照片缺失的部分
knn_y = knn.predict([X_test[i]])
linear_y = linear.predict([X_test[i]])
ridge_y = ridge.predict([X_test[i]])
lasso_y = lasso.predict([X_test[i]])
#合并原始照片
true_img=np.concatenate((X_test[i].reshape(64,32),
y_test[i].reshape(64,32)),axis=1)
#合并预测照片
knn_img=np.concatenate((X_test[i].reshape(64,32),
knn_y[0].reshape(64,32)),axis=1)
linear_img=np.concatenate((X_test[i].reshape(64,32),
linear_y[0].reshape(64,32)),axis=1)
lasso_img=np.concatenate((X_test[i].reshape(64,32),
lasso_y[0].reshape(64,32)),axis=1)
ridge_img=np.concatenate((X_test[i].reshape(64,32),
ridge_y[0].reshape(64,32)),axis=1)
index=[true_img,knn_img,linear_img,lasso_img,ridge_img]
#一行显示5张照片做对比
for j in range(5):
axes = plt.subplot(5,5,(j+1)+i*5)
axes.imshow(index[j])
if i < 1:
axes.set_title(title[j])
经过对比使用岭回归(ridge)模型对照片右半部分补全效果较好。
后记
【后记】为了让大家能够轻松学编程,我创建了一个公众号【轻松学编程】,里面有让你快速学会编程的文章,当然也有一些干货提高你的编程水平,也有一些编程项目适合做一些课程设计等课题。
也可加我微信【1257309054】,拉你进群,大家一起交流学习。
如果文章对您有帮助,请我喝杯咖啡吧!
公众号


关注我,我们一起成长~~
python机器学习实现人脸图片自动补全的更多相关文章
- Python 在 Terminal 中的自动补全
为了在 Terminal 中使用 Python 更加方便,在 home 目录下添加脚本 .pythonstartup,内容如下, 然后在 .bashrc 中添加 export PYTHONSTARTU ...
- Python交互模式下代码自动补全
这个功能是以lib的形式提供的,配置写到home下的.pythonrc文件中, 并设置好环境变量让python启动时执行初始化: # ~/.pythonrc # enable syntax compl ...
- 在Python命令行和VIM中自动补全
作者:gnuhpc 出处:http://www.cnblogs.com/gnuhpc/ 1. VIM下的配置: wget https://github.com/rkulla/pydiction/arc ...
- python环境下使用tab自动补全命令
# vim /usr/lib/python2.7/dist-packages/tab.py 加入如下内容: #!/usr/bin/env python # python startup file im ...
- python代码自动补全
牛逼了!Python代码补全利器,提高效率告别996! Python之禅 Python之禅 微信号 VTtalk 功能介绍 人生苦短,我用Python,这里是一名老程序员分享Python技术的地方,欢 ...
- 这个 Python 代码自动补全神器搞得我卧槽卧槽的
是时候跟你说说这个能让你撸代码撸得舒服得不要不要的神器了——kite. ! 简单来说,它是一款 IDE 的插件,能做到代码自动补全,可能你会说了,这有什么牛逼的?一般的编辑器不都有这个功能么 ...
- Python自动补全
转自:http://blog.linuxeye.com/324.html Python自动补全有vim编辑下和python交互模式下,下面分别介绍如何在这2种情况下实现Tab键自动补全. 一.vim ...
- Linux python <tab>自动补全
为Python添加交互模式下TAB自动补全以及命令历史功能. 1.获取python目录 [root@localhost ~]# python Python 2.6.6 (r266:84292, Jul ...
- python命令行添加Tab键自动补全
1.编写一个tab的自动补全脚本,名为tab.py #!/usr/bin/python # python tab complete import sys import readline import ...
随机推荐
- Python-序列常用方法 + * += extend append方法区别
+ 两边都是相同序列类型.拼接成一个新的序列 print((1, 2, 3) + (4, 6)) print("beimenchuixue" + "ximenchuife ...
- python_购物车
流程图 实现方式 #!/usr/bin/python3 __author__ = 'beimenchuixue' __blog__ = 'http://www.cnblogs.com/2bjiuji ...
- Go 指针相关
Go指针 Go语言中的指针非常简单,没有偏移和运算,只需要记住两个符号.&取变量地址与*根据地址取值. 以下是一个简单的示例: package main import ( "fmt& ...
- SpringBoot2.3中@Async实现异步
启动加上@EnableAsync ,需要执行异步方法上加入@Async. 在方法上加上@Async之后 底层使用多线程技术. 不使用异步 先关代码: package com.yiyang.myfirs ...
- C++对话框创建及修改对话框属性
转载:http://www.51testing.com/html/48/n-3151648.html 创建对话框 C++中对话框分为模式对话框和非模式对话框. 模式对话框的创建: MyDialog m ...
- Tensorflow学习笔记No.6
数据的批标准化 本篇主要讲述什么是标准化,为什么要标准化,以及如何进行标准化(添加BN层). 1.什么是标准化 传统机器学习中标准化也叫做归一化. 一般是将数据映射到指定的范围,用于去除不同维度数据的 ...
- java之网络编程1-Tcp
一,了解之前先了解一下网络基础 首先理清一个概念:网络编程 != 网站编程,网络编程现在一般称为TCP/IP编程 一般的网络编程都称为Socket编程,Socket的英文意思是"插座&quo ...
- devops-jenkins基于角色的权限管理RBAC
一. devops-jenkins基于角色的权限管理RBAC 1 安装角色的rbac角色管理 1.1) 点击系统管理 1.2) 选择插件管理 1.3) 选择可选插件,输入role搜索 1.4) 选择 ...
- git的项目完整操作
今天来说下项目中git 的使用,针对常规操作: 然后执行 git status 可以看到目前的状态: 再执行添加操作 git add . 添加所有文件 接着执行提交命令 git com ...
- python之线程池和进程池
线程池和进程池 一.池的概念 池是用来保证计算机硬件安全的情况下最大限度的利用计算机 它降低了程序的运行效率但是保证了计算机硬件的安全从而让你写的程序能够正常运行 ''' 无论是开设进程也好还是开设线 ...