SparkStreaming是架构在SparkCore上的一个“应用”,SparkStreaming主要由DStreamGraph、Job的生成、数据的接收和导入以及容错四大模块组成,我们今天就从这四大模块入手,看看每个模块都有什么样的调优方式

1 DStreamGraph

其实这部分主要是算子的使用优化,这个跟Spark调优的内容是相同,在这一部分可以优化的内容有

  • 重复使用的rdd进行cache
  • 使用高性能的算子代替性能差的算子
    • reduceByKey\aggregateByKey代替groupByKey
    • 使用mappartition代替map
    • 使用foreachpartition代替foreach
  • 使用Kryo序列化代替Java序列化
  • filter之后使用coalesce减少小任务

2 Job的生成

这一部分主要涉及到的调优是batchInternal的调整,为了程序不延迟地执行,合理的batchInternal是必要的

3 数据的接收和导入

这一部分主要是针对数据的接受速度进行调优,如果接收速度大于处理数据,那么程序会走向无限延迟最后崩溃的道路,所以主要的调优在于限速

  • 对于receiver和direct approach 方式都通用的

    spark.streaming.backpressure.enabled=true; sparkstreaming框架会自动地计算处理速度来控制数据的接受速度,建议开启

  • receiver方式
    • spark.streaming.receiver.maxRate 来进行限速
    • spark.streaming.blockInternal 设置缓存在内存块的大小,防止内存被撑爆
  • direct approach方式
    • spark.streaming.kafka.maxRatePartition来对每个分区进行限速

4 容错

主要是数据的容错方式选择

  • 热备:默认开启数据备份数为2
  • 冷备:开启WAL,将log保存到HDFS上,executor挂掉后可以从hdfs上进行数据的恢复
  • 重放:对于数据源本身支持重放有效,如Kafka,失效后可以通过offset值进行恢复

Spark Streaming 调优指南的更多相关文章

  1. Spark调优 | Spark Streaming 调优

    Spark调优 | Spark Streaming 调优 1.数据序列化 2.广播大变量 3.数据处理和接收时的并行度 4.设置合理的批处理间隔 5.内存优化 5.1 内存管理 5.2优化策略 5.3 ...

  2. Spark调优指南

    Spark相关问题 Spark比MR快的原因? 1) Spark的计算结果可以放入内存,支持基于内存的迭代,MR不支持. 2) Spark有DAG有向无环图,可以实现pipeline的计算模式. 3) ...

  3. Spark性能调优

    Spark性能优化指南——基础篇 https://tech.meituan.com/spark-tuning-basic.html Spark性能优化指南——高级篇 https://tech.meit ...

  4. Spark官方调优文档翻译(转载)

    Spark调优 由于大部分Spark计算都是在内存中完成的,所以Spark程序的瓶颈可能由集群中任意一种资源导致,如:CPU.网络带宽.或者内存等.最常见的情况是,数据能装进内存,而瓶颈是网络带宽:当 ...

  5. Spark Job调优(Part 2)

    原文链接:https://wongxingjun.github.io/2016/05/11/Spark-Job%E8%B0%83%E4%BC%98-Part-2/ 这篇文章将会完成Part 1中留下的 ...

  6. 调优 | Apache Hudi应用调优指南

    通过Spark作业将数据写入Hudi时,Spark应用的调优技巧也适用于此.如果要提高性能或可靠性,请牢记以下几点. 输入并行性:Hudi对输入进行分区默认并发度为1500,以确保每个Spark分区都 ...

  7. 另一份Java应用调优指南之-前菜

    每一次成功的调优,都会诞生又一份的调优指南. 一些必须写在前面的军规,虽然与Java应用的调优没直接关联,但是测试同学经常不留神的地方. 1 独占你的测试机器 包括跑JMeter的那些机器. &quo ...

  8. Spark性能调优之代码方面的优化

    Spark性能调优之代码方面的优化 1.避免创建重复的RDD     对性能没有问题,但会造成代码混乱   2.尽可能复用同一个RDD,减少产生RDD的个数   3.对多次使用的RDD进行持久化(ca ...

  9. [Spark性能调优] 第一章:性能调优的本质、Spark资源使用原理和调优要点分析

    本課主題 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质 ...

随机推荐

  1. 在Visual Studio 2017中使用Asp.Net Core构建Angular4应用程序

    前言 Visual Studio 2017已经发布了很久了.做为集成了Asp.Net Core 1.1的地表最强IDE工具,越来越受.NET系的开发人员追捧. 随着Google Angular4的发布 ...

  2. P3390 【模板】矩阵快速幂

    题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...

  3. SQL-结构化查询语言(1)

    一:数据查询语言(DQL),Data Query Language,用以从表中获取数据,确定数据怎样在程序中给出.SELECT是DQL中用的最多的! select user,host,password ...

  4. [CF337D]邪恶古籍-树状dp

    Problem 邪恶古籍 题目大意 给出一些关键点,求这棵树上到最远关键点距离小于等于d的有多少个. Solution 一个非常简单的树形dp.然而我被这道题给玩坏了. 在经过分析以后,我们发现只需要 ...

  5. C语言学习随笔

    前段时间我们学习了HTML,感觉自己不在状态,后来就开始怀疑自己的智商呢!现在C语言也到了尾声,在这20天的学习过程中,我没 有以前那么的傲娇了. 我开始慢慢去反省自己,自己究竟该如何去学习,都说勤能 ...

  6. Mac终端查看sqlite3数据库、表数据等

    背景: 我们在用FMDB处理iOS数据库时,沙盒里保存的数据库格式为.sqlite3. 当我们需要在模拟器上调试或查看数据库内容时,我们可以直接在终端里查看到. 正文: 1.在沙盒路径找到需要查看到文 ...

  7. C++学习(五)入门篇——基本类型

    面向对象编程的本质是设计并扩展自己的数据类型,让类型和数据匹配. 内置C++分成两种类型:基本类型和复合类型 1.简单变量 程序需要存储信息时,必须记录三个基本属性 (1)信息将存储在哪 (2)要存储 ...

  8. android - 解决“应用自定义权限重名”

    背景 现场的开发今天跟我说,测试包装不上!报错"应用自定义权限重名"!!! 网上百度下关键字,发现魅族手机有这个毛病,顺藤摸瓜:"http://bbs.flyme.cn/ ...

  9. (转)Java线程:线程的同步与锁

      Java线程:线程的同步与锁       一.同步问题提出   线程的同步是为了防止多个线程访问一个数据对象时,对数据造成的破坏. 例如:两个线程ThreadA.ThreadB都操作同一个对象Fo ...

  10. ES6中的迭代器(Iterator)和生成器(Generator)

    前面的话 用循环语句迭代数据时,必须要初始化一个变量来记录每一次迭代在数据集合中的位置,而在许多编程语言中,已经开始通过程序化的方式用迭代器对象返回迭代过程中集合的每一个元素 迭代器的使用可以极大地简 ...