Description

Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away and join the circus. Their hoofed feet prevent them from tightrope walking and swinging from the trapeze (and their last attempt at firing a cow out of a cannon met with a dismal failure). Thus, they have decided to practice performing acrobatic stunts.

The cows aren't terribly creative and have only come up with one acrobatic stunt: standing on top of each other to form a vertical stack of some height. The cows are trying to figure out the order in which they should arrange themselves ithin this stack.

Each of the N cows has an associated weight (1 <= W_i <= 10,000) and strength (1 <= S_i <= 1,000,000,000). The risk of a cow collapsing is equal to the combined weight of all cows on top of her (not including her own weight, of course) minus her strength (so that a stronger cow has a lower risk). Your task is to determine an ordering of the cows that minimizes the greatest risk of collapse for any of the cows.

Input

* Line 1: A single line with the integer N.

* Lines 2..N+1: Line i+1 describes cow i with two space-separated integers, W_i and S_i.

Output

* Line 1: A single integer, giving the largest risk of all the cows in any optimal ordering that minimizes the risk.

Sample Input

3
10 3
2 5
3 3

Sample Output

2

Hint

OUTPUT DETAILS:

Put the cow with weight 10 on the bottom. She will carry the other two cows, so the risk of her collapsing is 2+3-3=2. The other cows have lower risk of collapsing.

大体题意就是类似叠罗汉,不过一层只有一个,每只奶牛都有体重和力气,受到的重量w>力气s会有风险,求最小风险。
一开始想的是体重轻力气小的在上,交完发现WA了,最后猜测w和s相加排序,过了。
引用某大神的推导,证明:
设Di表示第i头奶牛的难受值,Wi表示第i头奶牛的体重,Si表示第i头奶牛的力量,令i,j相邻,且Wi+Si>Wj+Sj,设∑表示i和j上面的奶牛的重量之和

当i在j的上方时有

- Di=∑−Si


- Dj=∑+Wi−Sj


当j在i的上方时有

- Di=∑+Wj−Si


- Dj=∑−Sj


显然我们可以得到
③>①,②>④,②>③

这里面②最大,所以如果我们让i在j的上方最终答案一定不会更优,即证得此贪心策略的正确性。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
struct cow{
int w,p,sum;
};
int cmp(cow c1,cow c2)
{
return c1.sum<c2.sum;
}
cow c[50100];
int main()
{
int n;
//int w[10100],p[10100];
//memset(w,0,sizeof(w));
//memset(p,0,sizeof(p));
while(~scanf("%d",&n))
{
for(int i=0;i<n;i++)
{
scanf("%d%d",&c[i].w,&c[i].p);
c[i].sum=c[i].p+c[i].w;
}
//int sum[10100];
sort(c,c+n,cmp);
int ans=-0x3f3f3f3f;
int sum=0;
for(int i=0;i<n;i++)
{
//ans+=c[i].p-c[i-1].w;
ans=max(ans,sum-c[i].p);
sum+=c[i].w;
}
printf("%d\n",ans);
}
return 0;
}

  

POJ-3045 Cow Acrobats (C++ 贪心)的更多相关文章

  1. POJ 3045 Cow Acrobats (贪心)

    POJ 3045 Cow Acrobats 这是个贪心的题目,和网上的很多题解略有不同,我的贪心是从最下层开始,每次找到能使该层的牛的风险最小的方案, 记录风险值,上移一层,继续贪心. 最后从遍历每一 ...

  2. POJ - 3045 Cow Acrobats (二分,或者贪心)

    一开始是往二分上去想的,如果risk是x,题目要求则可以转化为一个不等式,Si + x >= sigma Wj ,j表示安排在i号牛上面的牛的编号. 如果考虑最下面的牛那么就可以写成 Si + ...

  3. poj 3045 Cow Acrobats(二分搜索?)

    Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...

  4. POJ 3045 Cow Acrobats

    Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...

  5. POJ 3045 Cow Acrobats (最大化最小值)

    题目链接:click here~~ [题目大意] 给你n头牛叠罗汉.每头都有自己的重量w和力量s,承受的风险数rank就是该牛上面全部牛的总重量减去该牛自身的力量,题目要求设计一个方案使得全部牛里面风 ...

  6. 【POJ - 3045】Cow Acrobats (贪心)

    Cow Acrobats Descriptions 农夫的N只牛(1<=n<=50,000)决定练习特技表演. 特技表演如下:站在对方的头顶上,形成一个垂直的高度. 每头牛都有重量(1 & ...

  7. 【POJ3045】Cow Acrobats(贪心)

    BUPT2017 wintertraining(16) #4 B POJ - 3045 题意 n(1 <= N <= 50,000) 个牛,重wi (1 <= W_i <= 1 ...

  8. 【BZOJ】1629: [Usaco2007 Demo]Cow Acrobats(贪心+排序)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1629 这题我想了很久都没想出来啊... 其实任意两头相邻的牛交换顺序对其它牛是没有影响的.. 那么我 ...

  9. BZOJ 1629 [Usaco2005 Nov]Cow Acrobats:贪心【局部证明】

    题目链接:http://begin.lydsy.com/JudgeOnline/problem.php?id=1332 题意: 有n头牛在“叠罗汉”. 第i头牛的体重为w[i],力量为s[i]. 一头 ...

随机推荐

  1. 安卓APP测试容易忽略的地方

    我们手机APP测试,主要针对的是android和ios两大主流操作系统,总体上来说android手机型号.版本多,bug也多:ios相对bug少.下面就针对Android说一下最容易忽略的测试点吧. ...

  2. Python - Seaborn可视化:图形个性化设置的几个小技巧

    1 概述 在可视化过程中,经常会对默认的制图效果不满意,希望能个性化进行各种设置. 本文通过一个简单的示例,来介绍seaborn可视化过程中的个性化设置.包括常用的设置,如: 设置图表显示颜色 设置图 ...

  3. Hibernate注解-类级别注解

  4. 关于C#开发 windows服务进程

    最近在做一个物联网项目,其中有一个模块是需要实现热水工程的自动化补水和回水功能 实现的方式有多种,我选用了VS C#的Windows服务方式. 首先是创建一个windows服务项目(名称随你喜欢的规范 ...

  5. BeautifulSoup练习第一节

    一.pip install beautilfulsoup4 二.主要使用html.parser这个python标准库 三.打印首页博客的时间.打印摘要 # coding:utf-8from bs4 i ...

  6. 大数问题:打印从1到最大的n位数

    //打印从1到最大的n位数:大数问题,用字符串表示数字来避免溢出 bool increment(char* number){ bool isOverFlow = false; int nTakeOve ...

  7. matlab-常用函数(4)

    find()函数的用法 搜索矩阵中指定数值的下标,若指定值有多个,则返回多个下标: x = 1:2:20 x = 1 3 5 7 9 11 13 15 17 19 k = find(x==13) k ...

  8. Apache Camel之FTP组件学习

    写在最前面 哎,最近提了离职,手头的活也基本上清理的差不多了.想着这个把月可以舒服的晃悠晃悠的离开,但是运维的小伙伴总是不架势,走之前还是提了个新需求. 先说下需求吧,我们的系统概括的讲就是一个接口系 ...

  9. CPU和GPU的差别

    详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt317 首先需要解释CPU和GPU这两个缩写分别代表什么.CPU即中央处理器, ...

  10. 数据库学习任务四:数据读取器对象SqlDataReader、数据适配器对象SqlDataAdapter、数据集对象DataSet

    数据库应用程序的开发流程一般主要分为以下几个步骤: 创建数据库 使用Connection对象连接数据库 使用Command对象对数据源执行SQL命令并返回数据 使用DataReader和DataSet ...