Lesser known purrr tricks
purrr is package that extends R’s functional programming capabilities. It brings a lot of new stuff to the table and in this post I show you some of the most useful (at least to me) functions included in purrr.
Getting rid of loops with map()
library(purrr)
numbers <- list(11, 12, 13, 14)
map_dbl(numbers, sqrt)
## [1] 3.316625 3.464102 3.605551 3.741657
You might wonder why this might be preferred to a for loop? It’s a lot less verbose, and you do not need to initialise any kind of structure to hold the result. If you google “create empty list in R” you will see that this is very common. However, with themap() family of functions, there is no need for an initial structure. map_dbl() returns an atomic list of real numbers, but if you use map() you will get a list back. Try them all out!
Map conditionally
map_if()
# Create a helper function that returns TRUE if a number is even
is_even <- function(x){
!as.logical(x %% 2)
}
map_if(numbers, is_even, sqrt)
## [[1]]
## [1] 11
##
## [[2]]
## [1] 3.464102
##
## [[3]]
## [1] 13
##
## [[4]]
## [1] 3.741657
map_at()
map_at(numbers, c(1,3), sqrt)
## [[1]]
## [1] 3.316625
##
## [[2]]
## [1] 12
##
## [[3]]
## [1] 3.605551
##
## [[4]]
## [1] 14
map_if() and map_at() have a further argument than map(); in the case of map_if(), a predicate function ( a function that returnsTRUE or FALSE) and a vector of positions for map_at(). This allows you to map your function only when certain conditions are met, which is also something that a lot of people google for.
Map a function with multiple arguments
numbers2 <- list(1, 2, 3, 4)
map2(numbers, numbers2, `+`)
## [[1]]
## [1] 12
##
## [[2]]
## [1] 14
##
## [[3]]
## [1] 16
##
## [[4]]
## [1] 18
You can map two lists to a function which takes two arguments using map_2(). You can even map an arbitrary number of lists to any function using pmap().
By the way, try this in: `+`(1,3) and see what happens.
Don’t stop execution of your function if something goes wrong
possible_sqrt <- possibly(sqrt, otherwise = NA_real_)
numbers_with_error <- list(1, 2, 3, "spam", 4)
map(numbers_with_error, possible_sqrt)
## [[1]]
## [1] 1
##
## [[2]]
## [1] 1.414214
##
## [[3]]
## [1] 1.732051
##
## [[4]]
## [1] NA
##
## [[5]]
## [1] 2
Another very common issue is to keep running your loop even when something goes wrong. In most cases the loop simply stops at the error, but you would like it to continue and see where it failed. Try to google “skip error in a loop” or some variation of it and you’ll see that a lot of people really just want that. This is possible by combining map() and possibly(). Most solutions involve the use of tryCatch() which I personally do not find very easy to use.
Don’t stop execution of your function if something goes wrong and capture the error
safe_sqrt <- safely(sqrt, otherwise = NA_real_)
map(numbers_with_error, safe_sqrt)
## [[1]]
## [[1]]$result
## [1] 1
##
## [[1]]$error
## NULL
##
##
## [[2]]
## [[2]]$result
## [1] 1.414214
##
## [[2]]$error
## NULL
##
##
## [[3]]
## [[3]]$result
## [1] 1.732051
##
## [[3]]$error
## NULL
##
##
## [[4]]
## [[4]]$result
## [1] NA
##
## [[4]]$error
## <simpleError in .f(...): non-numeric argument to mathematical function>
##
##
## [[5]]
## [[5]]$result
## [1] 2
##
## [[5]]$error
## NULL
safely() is very similar to possibly() but it returns a list of lists. An element is thus a list of the result and the accompagnying error message. If there is no error, the error component is NULL if there is an error, it returns the error message.
Transpose a list
safe_result_list <- map(numbers_with_error, safe_sqrt)
transpose(safe_result_list)
## $result
## $result[[1]]
## [1] 1
##
## $result[[2]]
## [1] 1.414214
##
## $result[[3]]
## [1] 1.732051
##
## $result[[4]]
## [1] NA
##
## $result[[5]]
## [1] 2
##
##
## $error
## $error[[1]]
## NULL
##
## $error[[2]]
## NULL
##
## $error[[3]]
## NULL
##
## $error[[4]]
## <simpleError in .f(...): non-numeric argument to mathematical function>
##
## $error[[5]]
## NULL
Here we transposed the above list. This means that we still have a list of lists, but where the first list holds all the results (which you can then access with safe_result_list$result) and the second list holds all the errors (which you can access withsafe_result_list$error). This can be quite useful!
Apply a function to a lower depth of a list
transposed_list <- transpose(safe_result_list)
transposed_list %>%
at_depth(2, is_null)
## $result
## $result[[1]]
## [1] FALSE
##
## $result[[2]]
## [1] FALSE
##
## $result[[3]]
## [1] FALSE
##
## $result[[4]]
## [1] FALSE
##
## $result[[5]]
## [1] FALSE
##
##
## $error
## $error[[1]]
## [1] TRUE
##
## $error[[2]]
## [1] TRUE
##
## $error[[3]]
## [1] TRUE
##
## $error[[4]]
## [1] FALSE
##
## $error[[5]]
## [1] TRUE
Sometimes working with lists of lists can be tricky, especially when we want to apply a function to the sub-lists. This is easily done with at_depth()!
Set names of list elements
name_element <- c("sqrt()", "ok?")
set_names(transposed_list, name_element)
## $`sqrt()`
## $`sqrt()`[[1]]
## [1] 1
##
## $`sqrt()`[[2]]
## [1] 1.414214
##
## $`sqrt()`[[3]]
## [1] 1.732051
##
## $`sqrt()`[[4]]
## [1] NA
##
## $`sqrt()`[[5]]
## [1] 2
##
##
## $`ok?`
## $`ok?`[[1]]
## NULL
##
## $`ok?`[[2]]
## NULL
##
## $`ok?`[[3]]
## NULL
##
## $`ok?`[[4]]
## <simpleError in .f(...): non-numeric argument to mathematical function>
##
## $`ok?`[[5]]
## NULL
Reduce a list to a single value
reduce(numbers, `*`)
## [1] 24024
reduce() applies the function * iteratively to the list of numbers. There’s also accumulate():
accumulate(numbers, `*`)
## [1] 11 132 1716 24024
which keeps the intermediary results.
This function is very general, and you can reduce anything:
Matrices:
mat1 <- matrix(rnorm(10), nrow = 2)
mat2 <- matrix(rnorm(10), nrow = 2)
mat3 <- matrix(rnorm(10), nrow = 2)
list_mat <- list(mat1, mat2, mat3)
reduce(list_mat, `+`)
## [,1] [,2] [,3] [,4] [,5]
## [1,] -0.5228188 0.4813357 0.3808749 -1.1678164 0.3080001
## [2,] -3.8330509 -0.1061853 -3.8315768 0.3052248 0.3486929
even data frames:
df1 <- as.data.frame(mat1)
df2 <- as.data.frame(mat2)
df3 <- as.data.frame(mat3)
list_df <- list(df1, df2, df3)
reduce(list_df, dplyr::full_join)
## Joining, by = c("V1", "V2", "V3", "V4", "V5")
## Joining, by = c("V1", "V2", "V3", "V4", "V5")
## V1 V2 V3 V4 V5
## 1 0.01587062 0.8570925 1.04330594 -0.5354500 0.7557203
## 2 -0.46872345 0.3742191 -1.88322431 1.4983888 -1.2691007
## 3 -0.60675851 -0.7402364 -0.49269182 -0.4884616 -1.0127531
## 4 -1.49619518 1.0714251 0.06748534 0.6650679 1.1709317
## 5 0.06806907 0.3644795 -0.16973919 -0.1439047 0.5650329
## 6 -1.86813223 -1.5518295 -2.01583786 -1.8582319 0.4468619
Hope you enjoyed this list of useful functions! If you enjoy the content of my blog, you can follow me on twitter.
转自:https://www.r-bloggers.com/lesser-known-purrr-tricks/?utm_source=feedburner&utm_medium=email&utm_campaign=Feed%3A+RBloggers+%28R+bloggers%29
Lesser known purrr tricks的更多相关文章
- Lesser known dplyr tricks
In this blog post I share some lesser-known (at least I believe they are) tricks that use mainly fun ...
- testng 教程之使用参数的一些tricks配合使用reportng
前两次的总结:testng annotation生命周期 http://www.cnblogs.com/tobecrazy/p/4579414.html testng.xml的使用和基本配置http: ...
- (转) How to Train a GAN? Tips and tricks to make GANs work
How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...
- Matlab tips and tricks
matlab tips and tricks and ... page overview: I created this page as a vectorization helper but it g ...
- LoadRunner AJAX TruClient协议Tips and Tricks
LoadRunner AJAX TruClient协议Tips and Trickshttp://automationqa.com/forum.php?mod=viewthread&tid=2 ...
- 【翻译】C# Tips & Tricks: Weak References - When and How to Use Them
原文:C# Tips & Tricks: Weak References - When and How to Use Them Sometimes you have an object whi ...
- 神经网络训练中的Tricks之高效BP(反向传播算法)
神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 ...
- Hex-Rays Decompiler Tips and tricks Volatile memory
https://www.hex-rays.com/products/decompiler/manual/tricks.shtml First of all, read the troubleshoot ...
- hdu 5276 YJC tricks time 数学
YJC tricks time Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...
随机推荐
- spring的MVC执行原理
spring的MVC执行原理 1.spring mvc将所有的请求都提交给DispatcherServlet,它会委托应用系统的其他模块负责对请求 进行真正的处理工作. 2.DispatcherSer ...
- iOS数据本地化
本篇随笔除了介绍 iOS 数据持久化知识之外,还贯穿了以下内容: (1)自定义 TableView,结合 block 从 ViewController 中分离出 View,轻 ViewControll ...
- 财付通API
开发财付通API的步骤: 1.首先开发财付通API时先获取商户号和密钥: 财付通测试号:商户号String partner = "1900000109";密钥String key ...
- 跨语言学习的基本思路及python的基础学习
笔者是C#出身,大学四年主修C#,工作三年也是C#语言开发.但在学校里其他的语言也有相应的课程,eg:Java,Php,C++都学过,当然只是学了皮毛(大学嘛,你懂得),严格来说未必入门,但这些语言的 ...
- [Oracle]LogMiner工具小结
(一)LogMiner工具的作用Logminer工具主要用来分析redo log和archive log文件.通过该工具,可以轻松获得Oracle redo log和archive log文件的具体内 ...
- Set up HTTP/2 server with Spring Boot 【基于Spring boot搭建http2.0服务器】
1. Server side With spring boot, we can set up a http server easily. Restcontroller make it easier t ...
- ES6之"let"能替代"var"吗?
译者按: 使用let的确会比var安全很多. 原文: Why You Shouldn't Use 'var' Anymore 译者: Fundebug 为了保证可读性,本文采用意译而非直译. 我已经使 ...
- mysql 中文出现?,设置utf8
windows系统下的mysql: 1.找到mysql的配置文件:文件名可能不是my.ini(如my-default.ini),修改成my.ini. 打开配置文件,并编辑如下:(若是没有[client ...
- 工具类总结---(六)---之http及https请求
下面使用的是HttpURLConnection进行的网络链接,并对https进行了忽略证书. 在这个utils里面,也使用到前面几个utils,比如下载文件的方法,就使用到了Fileutils pac ...
- JS立即执行函数表达式(IIFE)
原文为 http://benalman.com/news/2010/11/immediately-invoked-function-expression/#iife ----------------- ...