NAME

wireshark-filter - Wireshark filter syntax and reference


SYNOPSIS

wireshark [other options] [ -R "filter expression" ]

tshark [other options] [ -R "filter expression" ]


DESCRIPTION

Wireshark and TShark share a powerful filter engine that helps remove the noise from a packet trace and lets you see only the packets that interest you. If a packet meets the requirements expressed in your filter, then it is displayed in the list of packets. Display filters let you compare the fields within a protocol against a specific value, compare fields against fields, and check the existence of specified fields or protocols.

Filters are also used by other features such as statistics generation and packet list colorization (the latter is only available to Wireshark). This manual page describes their syntax. A comprehensive reference of filter fields can be found within Wireshark and in the display filter reference at http://www.wireshark.org/docs/dfref/.


FILTER SYNTAX

Check whether a field or protocol exists

The simplest filter allows you to check for the existence of a protocol or field. If you want to see all packets which contain the IP protocol, the filter would be "ip" (without the quotation marks). To see all packets that contain a Token-Ring RIF field, use "tr.rif".

Think of a protocol or field in a filter as implicitly having the "exists" operator.

Comparison operators

Fields can also be compared against values. The comparison operators can be expressed either through English-like abbreviations or through C-like symbols:

    eq, ==    Equal
ne, != Not Equal
gt, > Greater Than
lt, < Less Than
ge, >= Greater than or Equal to
le, <= Less than or Equal to

Search and match operators

Additional operators exist expressed only in English, not C-like syntax:

    contains  Does the protocol, field or slice contain a value
matches Does the protocol or text string match the given Perl
regular expression

The "contains" operator allows a filter to search for a sequence of characters, expressed as a string (quoted or unquoted), or bytes, expressed as a byte array. For example, to search for a given HTTP URL in a capture, the following filter can be used:

    http contains "http://www.wireshark.org";

The "contains" operator cannot be used on atomic fields, such as numbers or IP addresses.

The "matches" operator allows a filter to apply to a specified Perl-compatible regular expression (PCRE). The "matches" operator is only implemented for protocols and for protocol fields with a text string representation. For example, to search for a given WAP WSP User-Agent, you can write:

    wsp.user_agent matches "(?i)cldc"

This example shows an interesting PCRE feature: pattern match options have to be specified with the (?option) construct. For instance, (?i) performs a case-insensitive pattern match. More information on PCRE can be found in the pcrepattern(3) man page (Perl Regular Expressions are explained in http://perldoc.perl.org/perlre.html).

Functions

The filter language has the following functions:

    upper(string-field) - converts a string field to uppercase
lower(string-field) - converts a string field to lowercase

upper() and lower() are useful for performing case-insensitive string comparisons. For example:

    upper(ncp.nds_stream_name) contains "MACRO"
lower(mount.dump.hostname) == "angel"

Protocol field types

Each protocol field is typed. The types are:

    ASN.1 object identifier
Boolean
Character string
Compiled Perl-Compatible Regular Expression (GRegex) object
Date and time
Ethernet or other MAC address
EUI64 address
Floating point (double-precision)
Floating point (single-precision)
Frame number
Globally Unique Identifier
IPv4 address
IPv6 address
IPX network number
Label
Protocol
Sequence of bytes
Signed integer, 1, 2, 3, 4, or 8 bytes
Time offset
Unsigned integer, 1, 2, 3, 4, or 8 bytes

An integer may be expressed in decimal, octal, or hexadecimal notation. The following three display filters are equivalent:

    frame.pkt_len > 10
frame.pkt_len > 012
frame.pkt_len > 0xa

Boolean values are either true or false. In a display filter expression testing the value of a Boolean field, "true" is expressed as 1 or any other non-zero value, and "false" is expressed as zero. For example, a token-ring packet's source route field is Boolean. To find any source-routed packets, a display filter would be:

    tr.sr == 1

Non source-routed packets can be found with:

    tr.sr == 0

Ethernet addresses and byte arrays are represented by hex digits. The hex digits may be separated by colons, periods, or hyphens:

    eth.dst eq ff:ff:ff:ff:ff:ff
aim.data == 0.1.0.d
fddi.src == aa-aa-aa-aa-aa-aa
echo.data == 7a

IPv4 addresses can be represented in either dotted decimal notation or by using the hostname:

    ip.dst eq www.mit.edu
ip.src == 192.168.1.1

IPv4 addresses can be compared with the same logical relations as numbers: eq, ne, gt, ge, lt, and le. The IPv4 address is stored in host order, so you do not have to worry about the endianness of an IPv4 address when using it in a display filter.

Classless InterDomain Routing (CIDR) notation can be used to test if an IPv4 address is in a certain subnet. For example, this display filter will find all packets in the 129.111 Class-B network:

    ip.addr == 129.111.0.0/16

Remember, the number after the slash represents the number of bits used to represent the network. CIDR notation can also be used with hostnames, as in this example of finding IP addresses on the same Class C network as 'sneezy':

    ip.addr eq sneezy/24

The CIDR notation can only be used on IP addresses or hostnames, not in variable names. So, a display filter like "ip.src/24 == ip.dst/24" is not valid (yet).

IPX networks are represented by unsigned 32-bit integers. Most likely you will be using hexadecimal when testing IPX network values:

    ipx.src.net == 0xc0a82c00

Strings are enclosed in double quotes:

    http.request.method == "POST"

Inside double quotes, you may use a backslash to embed a double quote or an arbitrary byte represented in either octal or hexadecimal.

    browser.comment == "An embedded \" double-quote"

Use of hexadecimal to look for "HEAD":

    http.request.method == "\x48EAD"

Use of octal to look for "HEAD":

    http.request.method == "\110EAD"

This means that you must escape backslashes with backslashes inside double quotes.

    smb.path contains "\\\\SERVER\\SHARE"

looks for \\SERVER\SHARE in "smb.path".

The slice operator

You can take a slice of a field if the field is a text string or a byte array. For example, you can filter on the vendor portion of an ethernet address (the first three bytes) like this:

    eth.src[0:3] == 00:00:83

Another example is:

    http.content_type[0:4] == "text"

You can use the slice operator on a protocol name, too. The "frame" protocol can be useful, encompassing all the data captured by Wireshark or TShark.

    token[0:5] ne 0.0.0.1.1
llc[0] eq aa
frame[100-199] contains "wireshark"

The following syntax governs slices:

    [i:j]    i = start_offset, j = length
[i-j] i = start_offset, j = end_offset, inclusive.
[i] i = start_offset, length = 1
[:j] start_offset = 0, length = j
[i:] start_offset = i, end_offset = end_of_field

Offsets can be negative, in which case they indicate the offset from the end of the field. The last byte of the field is at offset -1, the last but one byte is at offset -2, and so on. Here's how to check the last four bytes of a frame:

    frame[-4:4] == 0.1.2.3

or

    frame[-4:] == 0.1.2.3

A slice is alwasy compared against either a string or a byte sequence. As a special case, when the slice is only 1 byte wide, you can compare it against a hex integer that 0xff or less (which means it fits inside one byte). This is not allowed for byte sequences greater than one byte, because then one would need to specify the endianness of the multi-byte integer. Also, this is not allowed for decimal numbers, since they would be confused with hex numbers that are already allowed as byte strings. Neverthelss, single-byte hex integers can be convienent:

    frame[4] == 0xff

Slices can be combined. You can concatenate them using the comma operator:

    ftp[1,3-5,9:] == 01:03:04:05:09:0a:0b

This concatenates offset 1, offsets 3-5, and offset 9 to the end of the ftp data.

Type conversions

If a field is a text string or a byte array, it can be expressed in whichever way is most convenient.

So, for instance, the following filters are equivalent:

    http.request.method == "GET"
http.request.method == 47.45.54

A range can also be expressed in either way:

    frame[60:2] gt 50.51
frame[60:2] gt "PQ"

Bit field operations

It is also possible to define tests with bit field operations. Currently the following bit field operation is supported:

    bitwise_and, &      Bitwise AND

The bitwise AND operation allows testing to see if one or more bits are set. Bitwise AND operates on integer protocol fields and slices.

When testing for TCP SYN packets, you can write:

    tcp.flags & 0x02

That expression will match all packets that contain a "tcp.flags" field with the 0x02 bit, i.e. the SYN bit, set.

Similarly, filtering for all WSP GET and extended GET methods is achieved with:

    wsp.pdu_type & 0x40

When using slices, the bit mask must be specified as a byte string, and it must have the same number of bytes as the slice itself, as in:

    ip[42:2] & 40:ff

Logical expressions

Tests can be combined using logical expressions. These too are expressible in C-like syntax or with English-like abbreviations:

    and, &&   Logical AND
or, || Logical OR
not, ! Logical NOT

Expressions can be grouped by parentheses as well. The following are all valid display filter expressions:

    tcp.port == 80 and ip.src == 192.168.2.1
not llc
http and frame[100-199] contains "wireshark"
(ipx.src.net == 0xbad && ipx.src.node == 0.0.0.0.0.1) || ip

Remember that whenever a protocol or field name occurs in an expression, the "exists" operator is implicitly called. The "exists" operator has the highest priority. This means that the first filter expression must be read as "show me the packets for which tcp.port exists and equals 80, and ip.src exists and equals 192.168.2.1". The second filter expression means "show me the packets where not (llc exists)", or in other words "where llc does not exist" and hence will match all packets that do not contain the llc protocol. The third filter expression includes the constraint that offset 199 in the frame exists, in other words the length of the frame is at least 200.

A special caveat must be given regarding fields that occur more than once per packet. "ip.addr" occurs twice per IP packet, once for the source address, and once for the destination address. Likewise, "tr.rif.ring" fields can occur more than once per packet. The following two expressions are not equivalent:

        ip.addr ne 192.168.4.1
not ip.addr eq 192.168.4.1

The first filter says "show me packets where an ip.addr exists that does not equal 192.168.4.1". That is, as long as one ip.addr in the packet does not equal 192.168.4.1, the packet passes the display filter. The other ip.addr could equal 192.168.4.1 and the packet would still be displayed. The second filter says "don't show me any packets that have an ip.addr field equal to 192.168.4.1". If one ip.addr is 192.168.4.1, the packet does not pass. If neither ip.addr field is 192.168.4.1, then the packet is displayed.

It is easy to think of the 'ne' and 'eq' operators as having an implicit "exists" modifier when dealing with multiply-recurring fields. "ip.addr ne 192.168.4.1" can be thought of as "there exists an ip.addr that does not equal 192.168.4.1". "not ip.addr eq 192.168.4.1" can be thought of as "there does not exist an ip.addr equal to 192.168.4.1".

Be careful with multiply-recurring fields; they can be confusing.

Care must also be taken when using the display filter to remove noise from the packet trace. If, for example, you want to filter out all IP multicast packets to address 224.1.2.3, then using:

    ip.dst ne 224.1.2.3

may be too restrictive. Filtering with "ip.dst" selects only those IP packets that satisfy the rule. Any other packets, including all non-IP packets, will not be displayed. To display the non-IP packets as well, you can use one of the following two expressions:

    not ip or ip.dst ne 224.1.2.3
not ip.addr eq 224.1.2.3

The first filter uses "not ip" to include all non-IP packets and then lets "ip.dst ne 224.1.2.3" filter out the unwanted IP packets. The second filter has already been explained above where filtering with multiply occurring fields was discussed.


FILTER FIELD REFERENCE

The entire list of display filters is too large to list here. You can can find references and examples at the following locations:


NOTES

The wireshark-filters manpage is part of the Wireshark distribution. The latest version of Wireshark can be found at http://www.wireshark.org.

Regular expressions in the "matches" operator are provided by GRegex in GLib. See http://developer.gnome.org/glib/2.32/glib-regex-syntax.html/ or http://www.pcre.org/ for more information.

This manpage does not describe the capture filter syntax, which is different. See the manual page of pcap-filter(7) or, if that doesn't exist, tcpdump(8), or, if that doesn't exist, http://wiki.wireshark.org/CaptureFilters for a description of capture filters.


SEE ALSO

wireshark(1), tshark(1), editcap(1), pcap(3), pcap-filter(7) or tcpdump(8) if it doesn't exist.


AUTHORS

See the list of authors in the Wireshark man page for a list of authors of that code.

wireshark filter manualpage的更多相关文章

  1. Wireshark filter语法

    过滤器语法 ------------------------------------------------------------- 最简单的过滤允许你检查一个协议或者字段的存在.如果你想查看所有的 ...

  2. 用Wireshark简单分析HTTP通信

    我们都学过TCP,HTTP的相关概念,本文借助协议分析工具Wireshark,让大家对一些概念眼见为实,权当温故而知新. 场景: 在Client(10.239.196.211)上通过web brows ...

  3. 新版本wireshark tshark使用

    Wireshark-tshark wireshark 指令模式 => tshark Windows 及Linux 可至安裝目錄執行>tshark tshark.exe -i 7(利用-D找 ...

  4. 如何利用Wireshark解密SSL和TLS流量

    如何利用Wireshark解密SSL和TLS流量https://support.citrix.com/article/CTX135121 1.有server端的private key,直接在wires ...

  5. TCP三次握手和四次挥手及wireshark抓取

    TCP的三次握手与四次挥手的详细介绍: 三次握手: 第一次握手(SYN=1, seq=x): 客户端发送客户端发送一个 TCP 的 SYN 标志位置1的,指明客户端打算连接的服务器的端口,以及初始序号 ...

  6. 常用git命令和工具

    0. ln -s src_dir  //一个参数即可在当前目录下生成一个软链接   1.git command --clone/push a branch      git clone <url ...

  7. django 操作数据库--orm(object relation mapping)---models

    思想 django为使用一种新的方式,即:关系对象映射(Object Relational Mapping,简称ORM). PHP:activerecord Java:Hibernate C#:Ent ...

  8. [wireshark] ip filter

    查ip 时,使用 ip==10.224.37.18 发现无效 使用 ip.dst, 查到了 Match destination: ip.dst == x.x.x.x Match source: ip. ...

  9. wireshark 的使用(filter的用法)

    转自:http://blog.csdn.net/hanyuxinting/article/details/5558095 过滤器语法---------------------------------- ...

随机推荐

  1. 2732: [HNOI2012]射箭( 半平面交 )

    很久没写题解了= =,来水一发吧= = 首先这道题很明显就是求y=ax^2+bx的是否有值取,每一个式子都代表着两个半平面,然后直接半平面交就行了 借鉴了hzwer的代码,还是特别简洁的说 CODE: ...

  2. C# 图片平移及缩放

    1.图片平移 Monitor.rar 在CSDN上下载,是个有地图编辑功能. http://download.csdn.net/detail/gxingmin/883699 2.图片缩放 http:/ ...

  3. OpenCv 2.4.9 (二) 核心函数

    前言 经过前面一节的怎样读取图片,我们可以做一些有趣的图像变换,下面我们首先介绍使用遍历的方法实现,然后我们使用内置的函数实现. 矩阵掩码实现 矩阵掩码,和卷积神经网络中的卷积类似.一个例子如下: 现 ...

  4. [转]支持向量机SVM总结

    首先,对于支持向量机(SVM)的简单总结: 1. Maximum Margin Classifier 2. Lagrange Duality 3. Support Vector 4. Kernel 5 ...

  5. JMessage是让App 同时集成 Push 功能与 IM 功能最完美的方案

    历经几个月的沉寂,以及兄弟们的奋战,极光推送的兄弟产品诞生了:极光IM,英文名 JMessage. 极光IM 是我们团队基于大量客户的需求反馈,在很多客户的殷切期盼下所开发的.团队成员一方面要支撑极光 ...

  6. 赵本山 教你如何在实战项目中使用WCF

    我们都知道调用WCF直接在Service References中引用可以远程调用的WCF Url就行了. 但是我们想过没,在Development环境中可以这样做,但是QA.UAT.Productio ...

  7. poolingHttpclientConnectionmanager 使用

    在阅读 netflix zuul 的simpleHostRoutingFilter 中,发现了一些问题. 主要是关于poolingHttpclientConnectionmanager. 在寻找其中的 ...

  8. 菜鸟聊JavaScript中this

    菜鸟聊this this在JavaScript中是一个比较头疼的问题,我现在以一枚菜鸟的观点结合代码简单的谈下JavaScript中的this指向问题. 1.例子1 function a() { va ...

  9. Internet Information Services安装与启动

    Internet Information Services安装 1.打开控制面板——程序——启动或关闭windows功能 2.找到Internet Information Services ——将其全 ...

  10. 梳理一下web总的一些概念

    servlet中的类适合繁复翻看文档,熟悉各个类的常用方法,看一些经典的案例代码. ServletConfig 每个项目有多个servlet,每个servlet对应一个ServletCOnfigt对象 ...