机器学习基石 2 Learning to Answer Yes/No

Perceptron Hypothesis Set

对于一个线性可分的二分类问题,我们可以采用感知器 (Perceptron)这种假设集。

这种模型可以用下面的表达式表示出来:

其中不同的向量 \(w\) 代表了不同的假设函数 \(h(x)\),我们的目标是使用一些算法调整 \(w\) 的值,使得假设函数 \(h(x)\) 与我们要预测的函数 \(f(x)\) 尽可能的接近。

我们的想法是:如果 \(h(x)\) 与 \(f(x)\) 足够接近,那么它们作用在训练集 \(D\) 上的结果会是一样的,即对训练集中的 \(x\),有 \(f(x) = h(x)\)。反过来说,如果对所有训练集中的 \(x\),有 \(f(x) = h(x)\),那么在一定程度上,我们可以认为 \(h(x)\) 与 \(f(x)\) 是接近的。

Perceptron Learning Algorithm (PLA)

这个模型中训练 \(w\) 的算法称为感知器算法(Perceptron Learning Algorithm),算法描述如下图:

思想是对预测错误的样本进行修正:

当 \(f(x)=y=+1\) 而预测结果 \(h(x)=sign(w^Tx)=-1\) 时,说明此时 \(w\) 与 \(x\) 的内积过小,夹角过大,需要让 \(w\) 靠近 \(x\),因此将 \(w\) 改为 \(w+x=w+yx\);

当 \(f(x)=y=-1\) 而预测结果 \(h(x)=sign(w^Tx)=+1\) 时,说明此时 \(w\) 与 \(x\) 的内积过大,夹角过小,需要让 \(w\) 远离 \(x\),因此将 \(w\) 改为 \(w-x=w+yx\);

反复修正预测错误的样本点直到所有训练样本都预测正确。

一种可行的算法如下:

Guarantee of PLA

能使用PLA算法的重要前提是样本是线性可分的,即存在 \(w_f\) 使得 \(y_n = sign(w_f^Tx_n)\),下面证明PLA算法是收敛的,即 \(w\) 能收敛到 \(w_f\),即算法能停止下来。

  1. \(w_f\) 与 \(w_t\) 的内积会单调递增

  2. \(w_t\) 增长速度有限

以上两点可以推出:

算法更新次数\(T \leq \frac{R^2}{\rho^2}\)

其中\(R^2 = \max \limits_{n}\{f(x)\}, \quad \rho = \min \limits_{n} y_n \frac{w_f^T}{||w_f^T||} x_n\)

总结以下PLA算法

Non-Separable Data

对于数据有噪声时,学习的过程发生了一点改变:

对感知器模型来说,此时可能无法使所有样本都正确分类,因此学习的目标从 \(\arg \limits_{w} y_n = sign(w^Tx_n)\) 变成了 \(\arg \min \limits_{w}\sum {[[y_n \neq sign(w^Tx_n)]]}\) (NP-hard 问题)

于是PLA算法可以改进成Pocket算法:

机器学习基石 2 Learning to Answer Yes/No的更多相关文章

  1. 机器学习基石 4 Feasibility of Learning

    机器学习基石 4 Feasibility of Learning Learning is Impossible? 机器学习:通过现有的训练集 \(D\) 学习,得到预测函数 \(h(x)\) 使得它接 ...

  2. 机器学习基石 3 Types of Learning

    机器学习基石 3 Types of Learning Learning with Different Output Space Learning with Different Data Label L ...

  3. 机器学习基石 1 The Learning Problem

    机器学习基石 1 The Learning Problem Introduction 什么是机器学习 机器学习是计算机通过数据和计算获得一定技巧的过程. 为什么需要机器学习 1 人无法获取数据或者数据 ...

  4. 機器學習基石(Machine Learning Foundations) 机器学习基石 课后习题链接汇总

    大家好,我是Mac Jiang,非常高兴您能在百忙之中阅读我的博客!这个专题我主要讲的是Coursera-台湾大学-機器學習基石(Machine Learning Foundations)的课后习题解 ...

  5. 机器学习基石(台湾大学 林轩田),Lecture 1: The Learning Problem

    课程的讲授从logo出发,logo由四个图案拼接而成,两个大的和两个小的.比较小的两个下一次课程就可能会解释到它们的意思,两个大的可能到课程后期才会解释到它们的意思(提示:红色代表使用机器学习危险,蓝 ...

  6. 机器学习基石第三讲:types of learning

    博客已经迁移至Marcovaldo's blog (http://marcovaldong.github.io/) 刚刚完毕机器学习基石的第三讲.这一讲主要介绍了机器学习的分类.对何种问题应该使用何种 ...

  7. Coursera机器学习基石 第1讲:The Learning Problem

    这门课的授课老师是个台湾人,师从Caltech的Yaser S. Abu-Mostafa,他们共同编撰了<Learning From Data>这本书.Yaser S. Abu-Mosta ...

  8. 机器学习基石第一讲:the learning problem

    博客已经迁移至Marcovaldo's blog (http://marcovaldong.github.io/) Andrew Ng的Machine Learning比較简单,已经看完.林田轩的机器 ...

  9. (转载)林轩田机器学习基石课程学习笔记1 — The Learning Problem

    (转载)林轩田机器学习基石课程学习笔记1 - The Learning Problem When Can Machine Learn? Why Can Machine Learn? How Can M ...

随机推荐

  1. Bloom Filter的基本原理和变种

    学习一个东西首先要知道这个东西是什么,可以做什么,接着再了解这个东西有什么好处和优势,然后再学习他的工作原理.下面我们分别从这三点简单介绍一下bloom filter,以及和他的变种. What:在允 ...

  2. Oracle RAC学习笔记01-集群理论

    Oracle RAC学习笔记01-集群理论 1.集群相关理论概述 2.Oracle Clusterware 3.Oracle RAC 原理 写在前面: 最近一直在看张晓明的大话Oracle RAC,真 ...

  3. Windows下Python读取GRIB数据

    之前写了一篇<基于Python的GRIB数据可视化>的文章,好多博友在评论里问我Windows系统下如何读取GRIB数据,在这里我做一下说明. 一.在Windows下Python为什么无法 ...

  4. linux - tar命令简单使用

    tar 新建一个tar文档 touch file1 touch file2 mkdir dir1 touch dir1/file3 # 普通tar文档 tar -cf tar-file.tar fil ...

  5. sass 基础——回顾

    1.webstorm 自动编译SASS 下载安装包 http://rubyinstaller.org/downloads/ 然后点击安装,路径为默认路径就行, 勾选以下两项 add Ruby exec ...

  6. 重写titleView

    在一些特定的情况下不能使用原有的titleView需要重写titleView代码如下 #import "TitleView.h" @implementation TitleView ...

  7. Codeforces Round #396 (Div. 2)

    C. Mahmoud and a Message time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  8. tableView的总结

    // // ViewController.m // TableViewController // // Created by 王妍 on 16/3/23. // Copyright © 2016年 c ...

  9. WPScan初体验

    近日在朋友圈看某位dalao在Ubuntu上安装WPScan花了一个小时,于是洒家随手在Kali Linux上输入了wpscan,发现Kali里面已经装好了.于是决定玩两把WPScan. WordPr ...

  10. Python 接口测试(三)

    四:python接口之http请求 python的强大之处在于提供了很多的标准库以及第三库,本文介绍urllib 和第三库的requests. Urllib 定义了很多函数和类,这些函数和类能够帮助我 ...