Numpy
一 : 安装ipython以及用到的包介绍
# 这里我们会用到ipython解释器,本文代码在ipython下运行
Pip3 install ipython
Pip3 install jupyter
Jupyter notebook
Pandas 是我们数据分析的核心包
pandas相当于是表数据
Series相当于表数据的一列
Dropna() : 过滤掉为nan的行
iloc 是下标 df[0,1] # 两个都是下标
Loc 是标签 df.loc[df.index[0], 'close'] # 两个都是标签
#例子中是知道一个索引,将索引变成标签
多维:
- Df.dropna(how='all') 删除单列全是nan的
- Df.dropna(axis=1) #x=1找行 , x=1找列
二: 关于numpy
import numpy as np
# astype
In [7]:
arr = np.array([1.2,2.3,3.4])
arr.astype('int')
arr
arr1 = arr.astype('int')
arr1
Out[7]:
array([1, 2, 3])
In [ ]:
# eye 矩阵
In [12]:
np.eye(6)
Out[12]:
array([[ 1., 0., 0., 0., 0., 0.],
[ 0., 1., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0., 0.],
[ 0., 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 1., 0.],
[ 0., 0., 0., 0., 0., 1.]])
In [14]:
import random
l = [random.randint(1,10) for i in range(0,20)]
l
Out[14]:
[2, 6, 3, 5, 1, 5, 7, 5, 10, 7, 2, 7, 4, 8, 2, 2, 3, 1, 5, 2]
In [17]:
arr = np.array(l)
arr
Out[17]:
array([ 2, 6, 3, 5, 1, 5, 7, 5, 10, 7, 2, 7, 4, 8, 2, 2, 3,
1, 5, 2])
In [18]:
list(filter(lambda x:x>5,l))
Out[18]:
[6, 7, 10, 7, 7, 8]
In [19]:
arr.T
Out[19]:
array([ 2, 6, 3, 5, 1, 5, 7, 5, 10, 7, 2, 7, 4, 8, 2, 2, 3,
1, 5, 2])
In [20]:
arr.size
Out[20]:
20
In [21]:
arr.ndim
Out[21]:
1
In [30]:
arr=np.array([1.2,2.3,3.8,5,6])
arr
Out[30]:
array([ 1.2, 2.3, 3.8, 5. , 6. ])
In [31]:
arr.astype('int')
Out[31]:
array([1, 2, 3, 5, 6])
In [34]:
# 花式索引
arr = np.array(l)
arr
Out[34]:
array([ 2, 6, 3, 5, 1, 5, 7, 5, 10, 7, 2, 7, 4, 8, 2, 2, 3,
1, 5, 2])
In [36]:
# 花式索引
arr[[1,3,5,7,9]]
Out[36]:
array([6, 5, 5, 5, 7])
In [37]:
# 花式索引
arr[np.arange(0,arr.size,2)]
Out[37]:
array([ 2, 3, 1, 7, 10, 2, 4, 2, 3, 5])
In [45]:
'''
ceil : 向上取整 3.1-->4 -3.1 --> -3
floor : 向下取整 取小 3.1-->3 3.9-->3
rint(round) : 四舍五入 3.6--> 4 3.1-->3 找最近的数
trunc(int) : 向零取整(舍去小数点后)
modf : 将整数和小数分开
maximun 相同位置取最大
minimum 相反
'''
arr = np.arange(10)
arr.sum()
arr.mean() # 平均数
arr.cumsum() # 前缀和
Out[45]:
array([ 0, 1, 3, 6, 10, 15, 21, 28, 36, 45])
In [43]:
# var : 方差, 表示这组输的离散程度
arr.var() 数越小越集中
Out[43]:
8.25
In [44]:
# std : 标准差
arr.std()
Out[44]:
2.8722813232690143
# uniform : 对应randint 小数
# np.random.rand() 0到1 的随机小数
In [47]:
l = [1,2,3,4,5]
random.shuffle(l) # 洗牌
l
Out[47]:
[5, 3, 4, 1, 2]
np.random.randint(-10,10,5) # -10到10之间的随机整数 拿5个
In [*]:
np.random.randint(-10,10,(3,5)) # -10到10之间的随机整数 拿5个
Numpy的更多相关文章
- 《机器学习实战-KNN》—如何在cmd命令提示符下运行numpy和matplotlib
问题背景:好吧,文章标题是瞎取得.平常用cmd运行python代码问题不大,我在学习<机器学习实战>这本书时,发现cmd无法运行import numpy as np以及import mat ...
- 机器学习实战笔记(Python实现)-08-线性回归
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- 机器学习实战笔记(Python实现)-04-Logistic回归
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- 机器学习实战笔记(Python实现)-03-朴素贝叶斯
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- 机器学习实战笔记(Python实现)-01-K近邻算法(KNN)
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- 《机器学习实战》学习笔记——第13章 PCA
1. 降维技术 1.1 降维的必要性 1. 多重共线性--预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯.2. 高维空间本身具有稀疏性.一维正态分布有68%的值落于正负 ...
- 机器学习实战 - 读书笔记(14) - 利用SVD简化数据
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第14章 - 利用SVD简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. 基 ...
- 机器学习实战 - 读书笔记(13) - 利用PCA来简化数据
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. ...
- 机器学习实战笔记5(logistic回归)
1:简单概念描写叙述 如果如今有一些数据点,我们用一条直线对这些点进行拟合(改线称为最佳拟合直线),这个拟合过程就称为回归.训练分类器就是为了寻找最佳拟合參数,使用的是最优化算法. 基于sigmoid ...
- K近邻 Python实现 机器学习实战(Machine Learning in Action)
算法原理 K近邻是机器学习中常见的分类方法之间,也是相对最简单的一种分类方法,属于监督学习范畴.其实K近邻并没有显式的学习过程,它的学习过程就是测试过程.K近邻思想很简单:先给你一个训练数据集D,包括 ...
随机推荐
- Nginx负载均衡的优缺点
Nginx的优点是: 1.工作在网络的7层之上,可以针对http应用做一些分流的策略,比如针对域名.目录结构,它的正则规则比HAProxy更为强大和灵活,这也是它目前广泛流行的主要原因之一,Nginx ...
- 如何简单愉快的上手PipelineDB
pipelineDB source:https://github.com/pipelinedb/pipelinedb 安装PipelineDB ./configure CFLAGS="-g ...
- zeppelin0.7.3源码编译
操作系统: Centos7.X Python版本: Python2.7 Maven版本:3.1.* Git:1.8.3.* JAVA:java1.7+ node npm bower grunt 每次执 ...
- Xamarin 使用极光推送 详细教程
源码下载地址:http://download.csdn.net/download/kendocross/8677263 有兴趣的看以去看看 一.首先新建一个Xamarin.Android 项目,过程 ...
- Heritrix1.14.4在Eclipse的配置和使用
转载 1.首先在 Eclipse 中新建 Java 工程 ,工程名自取,以MyHeritrix为例.利用下载的源代码包根据以下步骤来配置这个工程. 2.导入类库 Heritrix 所用到的工具类库都在 ...
- Linux----CentOS-7搭建免流服务器
本次实验采用腾讯云服务器:https://cloud.tencent.com/ 大学生身份的可以看看有没有什么活动购买 其他身份的78一个月 关于腾讯云服务器的使用可以看看腾讯云的使用手册 本博客涉及 ...
- Python爬虫:用BeautifulSoup进行NBA数据爬取
爬虫主要就是要过滤掉网页中没用的信息.抓取网页中实用的信息 一般的爬虫架构为: 在python爬虫之前先要对网页的结构知识有一定的了解.如网页的标签,网页的语言等知识,推荐去W3School: W3s ...
- Jena将owl文件持久化到数据库中
package cn.edu.shu.db; import java.io.File; import java.io.FileInputStream; import java.io.IOExcepti ...
- windows 环境安装oracle11g db 或者RAC 防火墙必需要透过的进程,port
1.Firewall Exceptions for Oracle Database For basic database operation and connectivity from remote ...
- Linux多线程实践(三)线程的基本属性设置API
POSIX 线程库定义了线程属性对象 pthread_attr_t ,它封装了线程的创建者能够訪问和改动的线程属性.主要包含例如以下属性: 1. 作用域(scope) 2. 栈尺寸(stack siz ...