题目描述

Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i <= 25,000). The cows are so proud of it that each one now wears her number in a gangsta manner engraved in large letters on a gold plate hung around her ample bovine neck.

Gangsta cows are rebellious and line up to be milked in an order called 'Mixed Up'. A cow order is 'Mixed Up' if the sequence of serial numbers formed by their milking line is such that the serial numbers of every pair of consecutive cows in line differs by more than K (1 <= K <= 3400). For example, if N = 6 and K = 1 then 1, 3, 5, 2, 6, 4 is a 'Mixed Up' lineup but 1, 3, 6, 5, 2, 4 is not (since the consecutive numbers 5 and 6 differ by 1).

How many different ways can N cows be Mixed Up?

For your first 10 submissions, you will be provided with the results of running your program on a part of the actual test data.

POINTS: 200

约翰家有N头奶牛,第i头奶牛的编号是Si,每头奶牛的编号都是唯一的。这些奶牛最近 在闹脾气,为表达不满的情绪,她们在挤奶的时候一定要排成混乱的队伍。在一只混乱的队 伍中,相邻奶牛的编号之差均超过K。比如当K = 1时,1, 3, 5, 2, 6, 4就是一支混乱的队伍, 而1, 3, 6, 5, 2, 4不是,因为6和5只差1。请数一数,有多少种队形是混乱的呢?

输入输出格式

输入格式:

  • Line 1: Two space-separated integers: N and K

  • Lines 2..N+1: Line i+1 contains a single integer that is the serial number of cow i: S_i

输出格式:

  • Line 1: A single integer that is the number of ways that N cows can
    be 'Mixed Up'. The answer is guaranteed to fit in a 64 bit integer.

输入输出样例

输入样例#1:

4 1
3
4
2
1
输出样例#1:

2

说明

The 2 possible Mixed Up arrangements are:

3 1 4 2

2 4 1 3

状压DP经典题,cnt为总的情况数,先定义一个t数组可以提高每一次计算1<<(j-1)的效率。

f[i][j]表示第i种状态下以j结尾的队伍有多少种混乱的队列。

然后i循环每一种状态,j循环每一个点。DP即可。。。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
using namespace std;
long long n,m;
long long f[<<][],s[],t[];
int main()
{
long long i,j,k,ans=;
cin>>n>>m;
for(i=;i<=n;i++)cin>>s[i];
for(i=;i<=n;i++)t[i]=<<i-;
int cnt=(<<n)-;
for(i=;i<=n;i++)f[t[i]][i]=;
for(i=;i<cnt;i++)
for(j=;j<=n;j++)
if(!(t[j]&i))
for(k=;k<=n;k++)
if(t[k]&i&&abs(s[j]-s[k])>m)
{
f[i|t[j]][j]+=f[i][k];
}
for(i=;i<=n;i++)
ans+=f[cnt][i];
cout<<ans;
return ;
}

[USACO08NOV]奶牛混合起来Mixed Up Cows的更多相关文章

  1. 洛谷 P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 解题报告

    P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题意: 给定一个长\(N\)的序列,求满足任意两个相邻元素之间的绝对值之差不超过\(K\)的这个序列的排列有多少个? 范围: ...

  2. 洛谷P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a u ...

  3. 洛谷 P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a u ...

  4. luogu P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...

  5. [USACO08NOV]奶牛混合起来Mixed Up Cows(状态压缩DP)

    题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...

  6. 【题解】Luogu2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...

  7. P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    题目描述 约翰家有N头奶牛,第i头奶牛的编号是Si,每头奶牛的编号都是唯一的.这些奶牛最近 在闹脾气,为表达不满的情绪,她们在挤奶的时候一定要排成混乱的队伍.在一只混乱的队 伍中,相邻奶牛的编号之差均 ...

  8. 洛谷 P2915 【[USACO08NOV]奶牛混合起来Mixed Up Cows】

    类似于n皇后的思想,只要把dfs表示放置情况的数字压缩成一个整数,就能实现记忆化搜索了. 一些有关集合的操作: {i}在集合S内:S&(1<<i)==1: 将{i}加入集合S:S= ...

  9. 【[USACO08NOV]奶牛混合起来Mixed Up Cows】

    首先我们能够一眼看到4 <= N <= 16,那么就是它了,我们要压缩的状态就是它了 那么之后能我们用这个状态表示什么呢,我们要表示的显然是每只奶牛是否在队伍中 比如说10吧,转成二进制后 ...

随机推荐

  1. Qt:添加点击事件的Label并显示图片

    1.给label添加点击事件 Qt中原本的label是没有点击事件的,如果想添加点击事件的话,可以继承QLabel类并重载鼠标事件(比如mousePressedEvent),然后在鼠标事件中发送一个信 ...

  2. hadoop集群间的hdfs文件拷贝

    1.背景 部门有个需求,在网络互通的情况下,把现有的hadoop集群(未做Kerberos认证,集群名为:bd-stg-hadoop)的一些hdfs文件拷贝到新的hadoop集群(做了Kerberos ...

  3. JWebFileTrans(JDownload): 一款可以从网络上下载文件的小程序(三),多线程断点下载

    一 前言 本篇博客是<JWebFileTrans(JDownload):一款可以从网络上下载文件的小程序>系列博客的第三篇,本篇博客的内容主要是在前两篇的基础上增加多线程的功能.简言之,本 ...

  4. JAVA中断机制详解

    Java提供了中断机制,可以使用它来结束一个线程.这种机制要求线程检查它是否被中断了,然后决定是不是响应这个中断请求.线程允许忽略中断请求并继续执行.Java的中断是一种协作机制.也就是说调用线程对象 ...

  5. JEESZ-Redis分布式缓存安装和使用

    独立缓存服务器: Linux CentOS Redis 版本: 3.0下面我们针对于Redis安装做下详细的记录:编译和安装所需的包:# yum install gcc tcl创建安装目录:# mkd ...

  6. 配置网络yum源

    有的时候服务器需要下载一些软件,是本地yum源没有的,这时候需要配置网络yum源 #cd  /etc/yum.repos.d/ 把这个目录下的配置文件备份,改名:或者是把文件里边的enabled=1的 ...

  7. 使用函数指针调用C++虚函数

    基本概念: 1. 函数指针,一个地址指针变量,其值指向代码区的某个函数首地址. 2. 虚函数,可以被子类覆写的C++成员函数.由虚函数表实现. 3. 虚函数表指针(vpt),指向虚函数表首地址的指针, ...

  8. Document 对象

    document.body //返回文档的body元素 document.cookies //返回当前文档有关的所有cookie document.createElement() //创建元素节点 d ...

  9. 分布式Java应用与实践 (一)

    一) 分布式Java应用 1.1 基于消息方式实现系统间的通信 数据传输 TCP/IP 可靠的网络传输协议,首先给通信双方建立链接之后再进行数据传输,保证链接及数据传输的可靠,因此会牺牲一些性能 UD ...

  10. Vue常用经典开源项目汇总参考-海量

    Vue常用经典开源项目汇总参考-海量 Vue是什么? Vue.js(读音 /vjuː/, 类似于 view) 是一套构建用户界面的 渐进式框架.与其他重量级框架不同的是,Vue 采用自底向上增量开发的 ...