python-numpy

csv文件的写入和存取

写入csv文件

CSV (Comma‐Separated Value, 逗号分隔值),是一种常见的文件格式,用来存储批量数据。

写入csv文件

np.savetxt(frame, array, fmt='%.18e', delimiter=None)
• frame : 文件、字符串或产生器,可以是.gz或.bz2的压缩文件
• array : 存入文件的数组
• fmt : 写入文件的格式,例如:%d %.2f %.18e
• delimiter : 分割字符串,默认是任何空格

示例:

>>> a = np.arange(100).reshape(5,20)
>>> np.savetxt('a.csv',a,fmt='%d',delimiter=',')

得到的文件是这样的

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39
40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59
60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79
80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99

改变参数,以浮点数写入

>>> a = np.arange(100).reshape(5,20)
>>> np.savetxt('a.csv',a,fmt='%.1f',delimiter=',')
0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0
20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0
40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0
60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0
80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0

读取csv文件

读取csv文件

np.loadtxt(frame, dtype=np.float, delimiter=None, unpack=False)
• frame : 文件、字符串或产生器,可以是.gz或.bz2的压缩文件
• dtype : 数据类型,可选
• delimiter : 分割字符串,默认是任何空格
• unpack : 如果True,读入属性将分别写入不同变量

示例:

>>> b = np.loadtxt('a.csv',delimiter=',')
>>> b
array([[ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.,
11., 12., 13., 14., 15., 16., 17., 18., 19.],
[ 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30.,
31., 32., 33., 34., 35., 36., 37., 38., 39.],
[ 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50.,
51., 52., 53., 54., 55., 56., 57., 58., 59.],
[ 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70.,
71., 72., 73., 74., 75., 76., 77., 78., 79.],
[ 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90.,
91., 92., 93., 94., 95., 96., 97., 98., 99.]])
>>> b = np.loadtxt('a.csv',dtype=np.int,delimiter=',')
>>> b
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59],
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79],
[80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
97, 98, 99]])

CSV只能有效存储一维和二维数组

np.savetxt() np.loadtxt()只能有效存取一维和二维数组

多维数据的存取

多维数据的写入

a.tofile(frame, sep='', format='%s')
• frame : 文件、字符串
• sep : 数据分割字符串,如果是空串,写入文件为二进制
• format : 写入数据的格式

示例;

>>> a = np.arange(100).reshape(5,10,2)
>>> a.tofile("a.dat",sep=',',format='%d')

a.dat的内容:

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99

如果不指定分隔符,则产生二进制文件,无法用文本编辑器看懂。

多维数据的读取

np.fromfile(frame, dtype=float, count=‐1, sep='')
• frame : 文件、字符串
• dtype : 读取的数据类型
• count : 读入元素个数,‐1表示读入整个文件
• sep : 数据分割字符串,如果是空串,写入文件为二进制

numpy的随机数函数

NumPy的random子库

np.random.*

函数 说明
rand(d0,d1,...,dn) 根据d0-dn创建随机数数组,浮点数,[0,1),均匀分布
randn(d0,d1,...,dn) 根据d0-dn创建随机数数组,标准正态分布
randint(low[,high,shape]) 根据shape创建随机整数或整数数组,范围是[low,high)
seed(s) 随机数种子,s是给定的种子值
shuffle(a) 根据数组a的第1轴进行随排列,改变数组a
permutation(a) 根据数组a的第1轴产生一个新的乱序数组,不改变数组a
choice(a[,size,replace,p]) 从一维数组a中以概率p抽取元素,形成size形状新数组replace表示是否可能重用元素,默认为False
uniform(low,high,size) 产生具有均匀分布的数组,low起始值,high结束值,size为形状
normal(loc,scale,size) 产生具有正态分布的数组,loc为均值,scale标准差,size为形状
poisson(lam,size) 产生具有泊松分布的数组,lam为随机事件发生率,size为形状

numpy的统计函数

NumPy直接提供的统计类函数

np.*

函数 说明
sum(a,axis=None) 根据给定axis计算数组a相关元素之和,axis整数或元组
mean(a,axis=None) 根据给定axis计算数组a相关元素的期望,axis整数或元组
average(a,axis=None,weights=None) 根据给定axis计算数组a相关元素的加权平均值
std(a,axis=None) 根据给定轴axis计算数组a相关元素的标准差
var(a,axis = None) 根据给定轴axis计算数组a相关元素的方差
min(a) max(a) 计算数组a中元素的最小值,最大值
argmin(a) argmax(a) 计算数组a中元素的最小值,最大值的降一维后下标
unravel_index(index,shape) 根据shape将一维下标index转换成多维下标
ptp(a) 计算数组a中元素最大值和最小值的差
median(a) 计算数组a中元素的中位数(中值)

axis=None 是统计函数的标配参数

numpy的梯度函数

函数 说明
np.gradient(f) 计算数组f中元素的梯度,当f为多维时,返回每个维度梯度

梯度:连续值之间的变化率,即斜率

XY坐标轴连续三个X坐标对应的Y轴值:a, b, c,其中,b的梯度是: (c‐a)/2

>>> a = np.random.randint(0,20,5)
>>> np.gradient(a)
array([ 9. , -0.5, -2. , -3. , -12. ])

http://www.mooc.cn/course/7848.html

python之numpy库[2]的更多相关文章

  1. Python的numpy库下的几个小函数的用法

    numpy库是Python进行数据分析和矩阵运算的一个非常重要的库,可以说numpy让Python有了matlab的味道 本文主要介绍几个numpy库下的小函数. 1.mat函数 mat函数可以将目标 ...

  2. Python数据分析numpy库

    1.简介 Numpy库是进行数据分析的基础库,panda库就是基于Numpy库的,在计算多维数组与大型数组方面使用最广,还提供多个函数操作起来效率也高 2.Numpy库的安装 linux(Ubuntu ...

  3. Python 的 Numpy 库

    Numpy: # NumPy库介绍 # NumPy的安装 #  NumPy系统是Python的一种开源的数值计算扩展 #  可用来存储和处理大型矩阵. #  因为不是Python的内嵌模块,因此 ...

  4. Python之Numpy库常用函数大全(含注释)

    前言:最近学习Python,才发现原来python里的各种库才是大头! 于是乎找了学习资料对Numpy库常用的函数进行总结,并带了注释.在这里分享给大家,对于库的学习,还是用到时候再查,没必要死记硬背 ...

  5. Python之Numpy库常用函数大全(含注释)(转)

    为收藏学习,特转载:https://blog.csdn.net/u011995719/article/details/71080987 前言:最近学习Python,才发现原来python里的各种库才是 ...

  6. 【python】numpy库和matplotlib库学习笔记

    Numpy库 numpy:科学计算包,支持N维数组运算.处理大型矩阵.成熟的广播函数库.矢量运算.线性代数.傅里叶变换.随机数生成,并可与C++/Fortran语言无缝结合.树莓派Python v3默 ...

  7. Python之numpy库

    NumPy库知识结构 更多详细内容参考:http://www.cnblogs.com/zhanglin-0/p/8504635.html

  8. Python基础——numpy库的使用

    1.numpy库简介:    NumPy提供了许多高级的数值编程工具,如:矩阵数据类型.矢量处理,以及精密的运算库.专为进行严格的数字处理而产生. 2.numpy库使用: 注:由于深度学习中存在大量的 ...

  9. python中numpy库的一些使用

    想不用第三方库实现点深度学习的基础部分,发现numpy真的好难(笑),在此做点遇到的函数的笔记 惯例官方文档:https://docs.scipy.org/doc/numpy-1.16.1/refer ...

  10. python中numpy库ndarray多维数组的的运算:np.abs(x)、np.sqrt(x)、np.modf(x)等

    numpy库提供非常便捷的数组运算,方便数据的处理. 1.数组与标量之间可直接进行运算 In [45]: aOut[45]:array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ ...

随机推荐

  1. CSS元素垂直居中方法总结

    坚持,坚持,坚持... 以上为自我鼓励,哈哈... ------------------------------------------------- 相信没有真正是尝试过的人应该都和我一样,觉得居中 ...

  2. Apache Spark1.1.0部署与开发环境搭建

    Spark是Apache公司推出的一种基于Hadoop Distributed File System(HDFS)的并行计算架构.与MapReduce不同,Spark并不局限于编写map和reduce ...

  3. 浅谈JavaScript匿名函数与闭包

    一. 匿名函数   //普通函数定义: //单独的匿名函数是无法运行的.就算运行了,也无法调用,因为没有名称. 如: function(){             alert('123');    ...

  4. 蓝桥杯-有奖猜谜-java

    /* (程序头部注释开始) * 程序的版权和版本声明部分 * Copyright (c) 2016, 广州科技贸易职业学院信息工程系学生 * All rights reserved. * 文件名称: ...

  5. mac地址学习笔记

    MAC(Media Access Control或者Medium Access Control)地址, 意译为媒体访问控制,或称为物理地址.硬件地址,用来定义网络设备的位置. 在OSI模型中,第三层网 ...

  6. Github+yeoman+gulp-angular初始化搭建angularjs前端项目框架

    在上篇文章里面我们说到了Github账号的申请与配置 那么当你有了Github账号并创建了一个自己的Github项目之后,首要的当然是搭建自己的项目框架啦! 本人对自己的定位是web前端狗,常用开发框 ...

  7. 关于input标签无法对齐的解决方法!

    在布局中发现各个input之间很难对齐,解决方法如下: 将input设置vertical-align属性: vertical-align:middle vertical-align:top verti ...

  8. C# 在iis windows authentication身份验证下,如何实现域用户自动登录

    前言: 该博文产生的背景是有个项目在客户那部署方式为iis windows身份验证,而客户不想每次登录系统都要输入帐号和密码来登录. 因此需要得到域用户,然后进行判断该用户是否可以进入系统. 解决方法 ...

  9. TreeSet源码分析

    第1部分 TreeSet介绍 TreeSet 是一个有序的集合,它的作用是提供有序的Set集合.它继承于AbstractSet抽象类,实现了NavigableSet<E>, Cloneab ...

  10. python selenium 环境搭建(一)

    elenium 虽然过了这么多年,但是到目前为止依然是比较流行的自动化框架了,还有很多的初学者在学习,所以根据自己的时间将把相关的资料汇总一下,下面首先我们需要搭建一下基础环境. 首先自己本身比较笨, ...