/*poj 3243
*解决高次同余方程的应用,已知 X^Y = K mod Z, 及X,Z,K的值,求 Y 的值
*/ #include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
#define lint __int64
#define MAXN 131071
struct HashNode { lint data, id, next; };
HashNode hash[MAXN<<1];
bool flag[MAXN<<1];
lint top; void Insert ( lint a, lint b )
{
lint k = b & MAXN;
if ( flag[k] == false )
{
flag[k] = true;
hash[k].next = -1;
hash[k].id = a;
hash[k].data = b;
return;
}
while( hash[k].next != -1 )
{
if( hash[k].data == b ) return;
k = hash[k].next;
}
if ( hash[k].data == b ) return;
hash[k].next = ++top;
hash[top].next = -1;
hash[top].id = a;
hash[top].data = b;
} lint Find ( lint b )
{
lint k = b & MAXN;
if( flag[k] == false ) return -1;
while ( k != -1 )
{
if( hash[k].data == b ) return hash[k].id;
k = hash[k].next;
}
return -1;
} lint gcd ( lint a, lint b )
{
return b ? gcd ( b, a % b ) : a;
} lint ext_gcd (lint a, lint b, lint& x, lint& y )
{
lint t, ret;
if ( b == 0 )
{
x = 1, y = 0;
return a;
}
ret = ext_gcd ( b, a % b, x, y );
t = x, x = y, y = t - a / b * y;
return ret;
} lint mod_exp ( lint a, lint b, lint n )
{
lint ret = 1;
a = a % n;
while ( b >= 1 )
{
if( b & 1 )
ret = ret * a % n;
a = a * a % n;
b >>= 1;
}
return ret;
} lint BabyStep_GiantStep ( lint A, lint B, lint C )
{
top = MAXN; B %= C;
lint tmp = 1, i;
for ( i = 0; i <= 100; tmp = tmp * A % C, i++ )
if ( tmp == B % C ) return i; lint D = 1, cnt = 0;
while( (tmp = gcd(A,C)) !=1 )
{
if( B % tmp ) return -1;
C /= tmp;
B /= tmp;
D = D * A / tmp % C;
cnt++;
} lint M = (lint)ceil(sqrt(C+0.0));
for ( tmp = 1, i = 0; i <= M; tmp = tmp * A % C, i++ )
Insert ( i, tmp ); lint x, y, K = mod_exp( A, M, C );
for ( i = 0; i <= M; i++ )
{
ext_gcd ( D, C, x, y ); // D * X = 1 ( mod C )
tmp = ((B * x) % C + C) % C;
if( (y = Find(tmp)) != -1 )
return i * M + y + cnt;
D = D * K % C;
}
return -1;
} int main()
{
lint A, B, C;
while( scanf("%I64d%I64d%I64d",&A,&C,&B ) !=EOF )
{
if ( !A && !B && !C ) break;
memset(flag,0,sizeof(flag));
lint tmp = BabyStep_GiantStep ( A, B, C );
if ( tmp == -1 )puts("No Solution");
else printf("%I64d\n",tmp);
}
return 0;
}

ACM_高次同余方程的更多相关文章

  1. 数论之高次同余方程(Baby Step Giant Step + 拓展BSGS)

    什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSG ...

  2. 【解高次同余方程】51nod1038 X^A Mod P

    1038 X^A Mod P 基准时间限制:1 秒 空间限制:131072 KB 分值: 320 X^A mod P = B,其中P为质数.给出P和A B,求< P的所有X. 例如:P = 11 ...

  3. 『高次同余方程 Baby Step Giant Step算法』

    高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. ...

  4. 高次同余方程模板BabyStep-GiantStep

    /************************************* ---高次同余方程模板BabyStep-GiantStep--- 输入:对于方程A^x=B(mod C),调用BabySt ...

  5. POJ 3243 Clever Y (求解高次同余方程A^x=B(mod C) Baby Step Giant Step算法)

    不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostre ...

  6. 高次同余方程 $BSGS$

    第一篇\(Blog\)... 还是决定把\(luogu\)上的那篇搬过来了. BSGS,又名北上广深 它可以用来求\(a^x \equiv b (mod \ n)\)这个同余方程的一个解,其中\(a, ...

  7. 解高次同余方程 (A^x=B(mod C),0<=x<C)Baby Step Giant Step算法

    先给出我所参考的两个链接: http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4 (AC神,数论帝  扩展Baby Step Gian ...

  8. 【hdu2815-Mod Tree】高次同余方程-拓展BadyStepGaintStep

    http://acm.hdu.edu.cn/showproblem.php?pid=2815 题意:裸题... 关于拓展BSGS的详细解释我写了一篇博文:http://www.cnblogs.com/ ...

  9. 【poj3243-Clever Y】高次同余方程-拓展BabyStepGiantStep

    http://poj.org/problem?id=3243 题意:给定X,Z,K,求一个最小的Y满足XY mod Z = K. 关于拓展BSGS的详细解释我写了一篇博文:http://www.cnb ...

随机推荐

  1. Python学习日记:day2

    1.格式化输出 name = input("请输入你的名字:") age =input("请输入你的年龄:") job =input("请输入你的工作 ...

  2. 仿知乎app登录界面(Material Design设计框架拿来就用的TexnInputLayout)

    在我脑子里还没有Material Design这种概念,就我个人而言,PC端应用扁平化设计必须成为首选,手当其冲的两款即时通讯旺旺和QQ早就完成UI扁平化的更新,然而客户端扁平化的设计本身就存在天生的 ...

  3. 开源API测试工具 Hitchhiker v0.7更新 - Schedule的对比diff

    Hitchhiker 是一款开源的支持多人协作的 Restful Api 测试工具,支持Schedule, 数据对比,压力测试,支持脚本定制请求,可以轻松部署到本地,和你的team成员一起协作测试Ap ...

  4. SET与SPLIT

    所以说不要以为前一天考了什么后一天就不会考这类的东西了 出题人总是能竭尽所能 打破你的下限qaq naive split 详解blog来自ljz大佬:http://blog.csdn.net/ljz_ ...

  5. Windows 7下将Tomcat Java程序设置为Windows Service

    可以参看以下资料: https://jingyan.baidu.com/article/b2c186c89f5127c46ef6ff08.html http://tomcat.apache.org/t ...

  6. springBoot系列教程03:redis的集成及使用

    1.为了高可用,先安装redis集群 参考我的另一篇文章 http://www.cnblogs.com/xiaochangwei/p/7993065.html 2.POM中引入redis <de ...

  7. angularjs 字段排序 多字段排序

    我们用angularjs {{}},ng-model循环绑定数组或对象的内容的时候,有时候会用到排序,有时候可能会有多个字段排序 具体要用到过滤 数据的展现,可以通过ng-repeat实现.当网页解析 ...

  8. js遍历 子节点 子元素

    Js 节点 子元素 属性 方法 // 添加子节点前 删除所有子节点 var usernameEle = document.getElementById("username"); v ...

  9. 【原创】重复造轮子之高仿EntityFramework

    前言 在上一篇<[原创]打造基于Dapper的数据访问层>中,Dapper在应付多表自由关联.分组查询.匿名查询等应用场景时经常要手动写SQL语句.看着代码里满屏的红色SQL字符串,简直头 ...

  10. Jenkins 学习笔记(二):很简单的发布一次

    发布思路:从 github 拉取一些文件,然后推送到 Target server 的某个目录. 准备 1. Jenkins 需要安装的插件:『 Publish over SSH 』 2. 全局配置:系 ...