ACM_高次同余方程
/*poj 3243
*解决高次同余方程的应用,已知 X^Y = K mod Z, 及X,Z,K的值,求 Y 的值
*/ #include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
#define lint __int64
#define MAXN 131071
struct HashNode { lint data, id, next; };
HashNode hash[MAXN<<1];
bool flag[MAXN<<1];
lint top; void Insert ( lint a, lint b )
{
lint k = b & MAXN;
if ( flag[k] == false )
{
flag[k] = true;
hash[k].next = -1;
hash[k].id = a;
hash[k].data = b;
return;
}
while( hash[k].next != -1 )
{
if( hash[k].data == b ) return;
k = hash[k].next;
}
if ( hash[k].data == b ) return;
hash[k].next = ++top;
hash[top].next = -1;
hash[top].id = a;
hash[top].data = b;
} lint Find ( lint b )
{
lint k = b & MAXN;
if( flag[k] == false ) return -1;
while ( k != -1 )
{
if( hash[k].data == b ) return hash[k].id;
k = hash[k].next;
}
return -1;
} lint gcd ( lint a, lint b )
{
return b ? gcd ( b, a % b ) : a;
} lint ext_gcd (lint a, lint b, lint& x, lint& y )
{
lint t, ret;
if ( b == 0 )
{
x = 1, y = 0;
return a;
}
ret = ext_gcd ( b, a % b, x, y );
t = x, x = y, y = t - a / b * y;
return ret;
} lint mod_exp ( lint a, lint b, lint n )
{
lint ret = 1;
a = a % n;
while ( b >= 1 )
{
if( b & 1 )
ret = ret * a % n;
a = a * a % n;
b >>= 1;
}
return ret;
} lint BabyStep_GiantStep ( lint A, lint B, lint C )
{
top = MAXN; B %= C;
lint tmp = 1, i;
for ( i = 0; i <= 100; tmp = tmp * A % C, i++ )
if ( tmp == B % C ) return i; lint D = 1, cnt = 0;
while( (tmp = gcd(A,C)) !=1 )
{
if( B % tmp ) return -1;
C /= tmp;
B /= tmp;
D = D * A / tmp % C;
cnt++;
} lint M = (lint)ceil(sqrt(C+0.0));
for ( tmp = 1, i = 0; i <= M; tmp = tmp * A % C, i++ )
Insert ( i, tmp ); lint x, y, K = mod_exp( A, M, C );
for ( i = 0; i <= M; i++ )
{
ext_gcd ( D, C, x, y ); // D * X = 1 ( mod C )
tmp = ((B * x) % C + C) % C;
if( (y = Find(tmp)) != -1 )
return i * M + y + cnt;
D = D * K % C;
}
return -1;
} int main()
{
lint A, B, C;
while( scanf("%I64d%I64d%I64d",&A,&C,&B ) !=EOF )
{
if ( !A && !B && !C ) break;
memset(flag,0,sizeof(flag));
lint tmp = BabyStep_GiantStep ( A, B, C );
if ( tmp == -1 )puts("No Solution");
else printf("%I64d\n",tmp);
}
return 0;
}
ACM_高次同余方程的更多相关文章
- 数论之高次同余方程(Baby Step Giant Step + 拓展BSGS)
什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSG ...
- 【解高次同余方程】51nod1038 X^A Mod P
1038 X^A Mod P 基准时间限制:1 秒 空间限制:131072 KB 分值: 320 X^A mod P = B,其中P为质数.给出P和A B,求< P的所有X. 例如:P = 11 ...
- 『高次同余方程 Baby Step Giant Step算法』
高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. ...
- 高次同余方程模板BabyStep-GiantStep
/************************************* ---高次同余方程模板BabyStep-GiantStep--- 输入:对于方程A^x=B(mod C),调用BabySt ...
- POJ 3243 Clever Y (求解高次同余方程A^x=B(mod C) Baby Step Giant Step算法)
不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostre ...
- 高次同余方程 $BSGS$
第一篇\(Blog\)... 还是决定把\(luogu\)上的那篇搬过来了. BSGS,又名北上广深 它可以用来求\(a^x \equiv b (mod \ n)\)这个同余方程的一个解,其中\(a, ...
- 解高次同余方程 (A^x=B(mod C),0<=x<C)Baby Step Giant Step算法
先给出我所参考的两个链接: http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4 (AC神,数论帝 扩展Baby Step Gian ...
- 【hdu2815-Mod Tree】高次同余方程-拓展BadyStepGaintStep
http://acm.hdu.edu.cn/showproblem.php?pid=2815 题意:裸题... 关于拓展BSGS的详细解释我写了一篇博文:http://www.cnblogs.com/ ...
- 【poj3243-Clever Y】高次同余方程-拓展BabyStepGiantStep
http://poj.org/problem?id=3243 题意:给定X,Z,K,求一个最小的Y满足XY mod Z = K. 关于拓展BSGS的详细解释我写了一篇博文:http://www.cnb ...
随机推荐
- 三菱Q系列PLC的智能功能模块程序
一.模拟量输入模块Q64AD 1.模块开关或者参数设置 1.1I/O分配 1.2开关设置使用通道1,0-5v, 1.3使用GX configurator设置自动刷新PLC设置智能功能模块参数,即将模拟 ...
- softmax分类算法原理(用python实现)
逻辑回归神经网络实现手写数字识别 如果更习惯看Jupyter的形式,请戳Gitthub_逻辑回归softmax神经网络实现手写数字识别.ipynb 1 - 导入模块 import numpy as n ...
- django xdmin使用
我们来看看我们原先django给我们自带的admin后台是什么样子的呢 有人说,你的界面怎么那么丑,我说这个还叫丑吗,他说丑,我说你来,我看看你的,上图 看到登录界面后,我说别看了,我去修改,修改,我 ...
- eclipse在debug模式下总是自动进入到ThreadPoolExecutor类中
当我们将web项目发布到tomcat服务器中,并且以debug模式启动的时候,总是自动跳转到 ThreadPoolExecutor 类中,如下: 解决办法 在eclipse中点击Window-> ...
- Python文件读写 - 文件r+ a+ open读写实际表现[示例]
先说结论: 文件r+ open: 1. write()不能实现插入写,它总是覆盖写或附加写: 2. 如果文件一打开即write(),则从开头覆盖写; 3. 如果文件一打开,用f.seek()指定文件指 ...
- Django学习日记01_环境搭建
1. 使用Vagrant 创建ubuntu虚拟机: 首先安装vagrant,网上有比较多的方法,如:http://www.th7.cn/system/mac/201405/55421.shtml 我使 ...
- java多线程(二)-Runnable和Thread
Java在顺序性语言的基础上提供了多线程的支持.Java的线程机制是抢占式的.这表示调度机制会周期的中断线程,将上下文切换到另一个线程,从而为每个线程都提供时间片.(与抢占式多线程对应的是 协作式多线 ...
- 在File Explorer的当前路径上直接打开VS Code
在C:\windows\system32文件下创建code.bat文件, 内容如下: @echo offstart "" "%ProgramFiles(x86)%\Mic ...
- SQL SERVER 审核
USE master CREATE SERVER AUDIT audit1 TO FILE (FILEPATH='E:\SQLAudit') USE TEST CREATE DATABASE AUD ...
- java基础day02
变量命名: 1.1)只能包含字母.数字._和$符,并且不能以数字开头 1.2)严格区分大小写 1.3)不能使用关键字 变量初始化:1)声明的同时初始化:2)先声明后初始化.基本数据类型0.byte: ...