1.explode

hive wiki对于expolde的解释如下:

explode() takes in an array (or a map) as an input and outputs the elements of the array (map) as separate rows. UDTFs can be used in the SELECT expression list and as a part of LATERAL VIEW.

As an example of using explode() in the SELECT expression list, consider a table named myTable that has a single column (myCol) and two rows:

Then running the query:

SELECT explode(myCol) AS myNewCol FROM myTable;

will produce: 
 
The usage with Maps is similar:

SELECT explode(myMap) AS (myMapKey, myMapValue) FROM myMapTable;

总结起来一句话:explode就是将hive一行中复杂的array或者map结构拆分成多行。

使用实例: 
xxx表中有一个字段mvt为string类型,数据格式如下:

[{“eid”:”38”,”ex”:”affirm_time_Android”,”val”:”1”,”vid”:”31”,”vr”:”var1”},{“eid”:”42”,”ex”:”new_comment_Android”,”val”:”1”,”vid”:”34”,”vr”:”var1”},{“eid”:”40”,”ex”:”new_rpname_Android”,”val”:”1”,”vid”:”1”,”vr”:”var1”},{“eid”:”19”,”ex”:”hotellistlpage_Android”,”val”:”1”,”vid”:”1”,”vr”:”var01”},{“eid”:”29”,”ex”:”bookhotelpage_Android”,”val”:”0”,”vid”:”1”,”vr”:”var01”},{“eid”:”17”,”ex”:”trainMode_Android”,”val”:”1”,”vid”:”1”,”vr”:”mode_Android”},{“eid”:”44”,”ex”:”ihotelList_Android”,”val”:”1”,”vid”:”36”,”vr”:”var1”},{“eid”:”47”,”ex”:”ihotelDetail_Android”,”val”:”0”,”vid”:”38”,”vr”:”var1”}]

用explode小试牛刀一下:

select explode(split(regexp_replace(mvt,'\\[|\\]',''),'\\},\\{')) from ods_mvt_hourly where day=20160710 limit 10;

最后出来的结果如下: 
{“eid”:”38”,”ex”:”affirm_time_Android”,”val”:”1”,”vid”:”31”,”vr”:”var1” 
“eid”:”42”,”ex”:”new_comment_Android”,”val”:”1”,”vid”:”34”,”vr”:”var1” 
“eid”:”40”,”ex”:”new_rpname_Android”,”val”:”1”,”vid”:”1”,”vr”:”var1” 
“eid”:”19”,”ex”:”hotellistlpage_Android”,”val”:”1”,”vid”:”1”,”vr”:”var01” 
“eid”:”29”,”ex”:”bookhotelpage_Android”,”val”:”0”,”vid”:”1”,”vr”:”var01” 
“eid”:”17”,”ex”:”trainMode_Android”,”val”:”1”,”vid”:”1”,”vr”:”mode_Android” 
“eid”:”44”,”ex”:”ihotelList_Android”,”val”:”1”,”vid”:”36”,”vr”:”var1” 
“eid”:”47”,”ex”:”ihotelDetail_Android”,”val”:”0”,”vid”:”38”,”vr”:”var1”} 
{“eid”:”38”,”ex”:”affirm_time_Android”,”val”:”1”,”vid”:”31”,”vr”:”var1” 
“eid”:”42”,”ex”:”new_comment_Android”,”val”:”1”,”vid”:”34”,”vr”:”var1”

2.lateral view

hive wiki 上的解释如下:

Lateral View Syntax

lateralView: LATERAL VIEW udtf(expression) tableAlias AS columnAlias (‘,’ columnAlias)* 
fromClause: FROM baseTable (lateralView)*

Description

Lateral view is used in conjunction with user-defined table generating functions such as explode(). As mentioned in Built-in Table-Generating Functions, a UDTF generates zero or more output rows for each input row. A lateral view first applies the UDTF to each row of base table and then joins resulting output rows to the input rows to form a virtual table having the supplied table alias.

Example

Consider the following base table named pageAds. It has two columns: pageid (name of the page) and adid_list (an array of ads appearing on the page) 

An example table with two rows: 

and the user would like to count the total number of times an ad appears across all pages. 
A lateral view with explode() can be used to convert adid_list into separate rows using the query:

SELECT pageid, adid
FROM pageAds LATERAL VIEW explode(adid_list) adTable AS adid;

The resulting output will be 
 
Then in order to count the number of times a particular ad appears, count/group by can be used:

SELECT adid, count(1)
FROM pageAds LATERAL VIEW explode(adid_list) adTable AS adid
GROUP BY adid;

The resulting output will be 

由此可见,lateral view与explode等udtf就是天生好搭档,explode将复杂结构一行拆成多行,然后再用lateral view做各种聚合。

3.实例

还是第一部分的例子,上面我们explode出来以后的数据,不是标准的json格式,我们通过lateral view与explode组合解析出标准的json格式数据:

SELECT ecrd, CASE WHEN instr(mvtstr,'{')=0
AND instr(mvtstr,'}')=0 THEN concat('{',mvtstr,'}') WHEN instr(mvtstr,'{')=0
AND instr(mvtstr,'}')>0 THEN concat('{',mvtstr) WHEN instr(mvtstr,'}')=0
AND instr(mvtstr,'{')>0 THEN concat(mvtstr,'}') ELSE mvtstr END AS mvt
FROM ods.ods_mvt_hourly LATERAL VIEW explode(split(regexp_replace(mvt,'\\[|\\]',''),'\\},\\{')) addTable AS mvtstr
WHERE DAY='20160710' and ecrd is not null limit 10

查询出来的结果: 
xxx 
{“eid”:”38”,”ex”:”affirm_time_Android”,”val”:”1”,”vid”:”31”,”vr”:”var1”} 
xxx 
{“eid”:”42”,”ex”:”new_comment_Android”,”val”:”1”,”vid”:”34”,”vr”:”var1”} 
xxx 
{“eid”:”40”,”ex”:”new_rpname_Android”,”val”:”1”,”vid”:”1”,”vr”:”var1”} 
xxx 
{“eid”:”19”,”ex”:”hotellistlpage_Android”,”val”:”1”,”vid”:”1”,”vr”:”var01”} 
xxx 
{“eid”:”29”,”ex”:”bookhotelpage_Android”,”val”:”0”,”vid”:”1”,”vr”:”var01” 
xxx 
{“eid”:”17”,”ex”:”trainMode_Android”,”val”:”1”,”vid”:”1”,”vr”:”mode_Android”} 
xxx 
{“eid”:”44”,”ex”:”ihotelList_Android”,”val”:”1”,”vid”:”36”,”vr”:”var1”} 
xxx 
{“eid”:”47”,”ex”:”ihotelDetail_Android”,”val”:”1”,”vid”:”38”,”vr”:”var1”} 
xxx 
{“eid”:”38”,”ex”:”affirm_time_Android”,”val”:”1”,”vid”:”31”,”vr”:”var1”} 
xxx 
{“eid”:”42”,”ex”:”new_comment_Android”,”val”:”1”,”vid”:”34”,”vr”:”var1”}

4.Ending

Lateral View通常和UDTF一起出现,为了解决UDTF不允许在select字段的问题。 
Multiple Lateral View可以实现类似笛卡尔乘积。 
Outer关键字可以把不输出的UDTF的空结果,输出成NULL,防止丢失数据。

参考内容: 
1.http://blog.csdn.net/oopsoom/article/details/26001307 lateral view的用法实例 
2.https://my.oschina.net/leejun2005/blog/120463 复合函数的用法,比较详细 
3.http://blog.csdn.net/zhaoli081223/article/details/46637517 udtf的介绍

Lateral View用法 与 Hive UDTF explode

 

Lateral View是Hive中提供给UDTF的conjunction,它可以解决UDTF不能添加额外的select列的问题。

1. Why we need Lateral View?

当我们想对hive表中某一列进行split之后,想对其转换成1 to N的模式,即一行转多列。
hive不允许我们在UDTF函数之外,再添加其它select语句。
如下,我们想将登录某个游戏的用户id放在一个字段user_ids里,对每一行数据用UDTF后输出多行。
  1.  
    select game_id, explode(split(user_ids,'\\[\\[\\[')) as user_id   from login_game_log  where dt='2014-05-15'
  2.  
    FAILED: Error in semantic analysis: UDTF's are not supported outside the SELECT clause, nor nested in expressions。

提示语法分析错误,UDTF不支持函数之外的select 语句,真无语。。。

如果我们想支持怎么办呢?接下来就是Lateral View 登场的时候了。

2. Lateral View explain

2.1 单个Lateral View

Lateral view is used in conjunction with user-defined table generatingfunctions such as explode(). As mentioned in Built-in Table-Generating Functions, a UDTF generates zero or more output rows foreach input row. A lateral view first applies the UDTF to each row of base tableand then joins resulting output rows to the input rows to form a virtual tablehaving the supplied table alias.

解释一下:

Lateral view 其实就是用来和像类似explode这种UDTF函数联用的。lateral view 会将UDTF生成的结果放到一个虚拟表中,然后这个虚拟表会和输入行即每个game_id进行join 来达到连接UDTF外的select字段的目的。

Lateral View Syntax

lateralView: LATERAL VIEW udtf(expression) tableAlias AS columnAlias (',' columnAlias)*
fromClause: FROM baseTable (lateralView)*

可以看出,可以在2个地方用Lateral view:

1. 在udtf前面用

2. 在from baseTable后面用

举个例子:

1. 先创建一个文件,里面2列用\t分割,game_id和user_ids

  1.  
    hive> create table test_lateral_view_shengli(game_id string,userl_ids string) row format delimited fields terminated by '\t' stored as textfile;
  2.  
    OK
  3.  
    Time taken: 2.451 seconds
  4.  
    hive> load data local inpath '/home/hadoop/test_lateral' into table test_lateral_view_shengli;
  5.  
    Copying data from file:/home/hadoop/test_lateral
  6.  
    Copying file: file:/home/hadoop/test_lateral
  7.  
    Loading data to table dw.test_lateral_view_shengli
  8.  
    OK
  9.  
    Time taken: 6.716 seconds
  10.  
    hive> select * from test_lateral_view_shengli;
  11.  
    OK
  12.  
    game101 15358083654[[[ab33787873[[[zjy18052480603[[[shlg1881826[[[lxqab110
  13.  
    game66 winning1ren[[[13810537508
  14.  
    game101 hu330602003[[[hu330602004[[[hu330602005[[[15967506560

下面使用lateral_view

  1.  
    hive> select game_id, user_id
  2.  
    > from test_lateral_view_shengli lateral view explode(split(userl_ids,'\\[\\[\\[')) snTable as user_id
  3.  
    > ;
  4.  
    Total MapReduce jobs = 1
  5.  
    Launching Job 1 out of 1
  6.  
    Number of reduce tasks is set to 0 since there's no reduce operator
  7.  
    Starting Job = job_201403301416_445839, Tracking URL = http://10.1.9.10:50030/jobdetails.jsp?jobid=job_201403301416_445839
  8.  
    Kill Command = /app/home/hadoop/src/hadoop-0.20.2-cdh3u5/bin/../bin/hadoop job -Dmapred.job.tracker=10.1.9.10:9001 -kill job_201403301416_445839
  9.  
    2014-05-16 17:39:19,108 Stage-1 map = 0%, reduce = 0%
  10.  
    2014-05-16 17:39:28,157 Stage-1 map = 100%, reduce = 0%
  11.  
    2014-05-16 17:39:38,830 Stage-1 map = 100%, reduce = 100%
  12.  
    Ended Job = job_201403301416_445839
  13.  
    OK
  14.  
    game101 hu330602003
  15.  
    game101 hu330602004
  16.  
    game101 hu330602005
  17.  
    game101 15967506560
  18.  
    game101 15358083654
  19.  
    game101 ab33787873
  20.  
    game101 zjy18052480603
  21.  
    game101 shlg1881826
  22.  
    game101 lxqab110
  23.  
    game66 winning1ren
  24.  
    game66 13810537508

2.2 多个Lateral View

From语句后可以跟多个Lateral View。
A FROM clause can have multiple LATERAL VIEW clauses. Subsequent LATERAL VIEWS can reference columns from any of the tables appearing to the left of the LATERAL VIEW.
给定数据:

Array<int> col1

Array<string> col2

[1, 2]

[a", "b", "c"]

[3, 4]

[d", "e", "f"]

转换目标:

想同时把第一列和第二列拆开,类似做笛卡尔乘积。

int myCol1

string myCol2

1

"a"

1

"b"

1

"c"

2

"a"

2

"b"

2

"c"

3

"d"

3

"e"

3

"f"

4

"d"

4

"e"

4

"f"

我们可以这样写:
  1.  
    SELECT myCol1, myCol2 FROM baseTable
  2.  
    LATERAL VIEW explode(col1) myTable1 AS myCol1
  3.  
    LATERAL VIEW explode(col2) myTable2 AS myCol2;

3. Outer Lateral View

还有一种情况,如果UDTF转换的Array是空的怎么办呢?
在Hive0.12里面会支持outer关键字,如果UDTF的结果是空,默认会被忽略输出。
如果加上outer关键字,则会像left outer join 一样,还是会输出select出的列,而UDTF的输出结果是NULL。
hive> select * FROM test_lateral_view_shengli LATERAL VIEW explode(array()) C AS a ;

结果是什么都不输出。

 
如果加上outer关键字:
SELECT * FROM src LATERAL VIEW OUTER explode(array()) C AS a limit 10;

  1.  
    238 val_238 NULL
  2.  
    86 val_86 NULL
  3.  
    311 val_311 NULL
  4.  
    27 val_27 NULL
  5.  
    165 val_165 NULL
  6.  
    409 val_409 NULL
  7.  
    255 val_255 NULL
  8.  
    278 val_278 NULL
  9.  
    98 val_98 NULL
  10.  
    ...

4.总结:

 
Lateral View通常和UDTF一起出现,为了解决UDTF不允许在select字段的问题。
Multiple Lateral View可以实现类似笛卡尔乘积。
Outer关键字可以把不输出的UDTF的空结果,输出成NULL,防止丢失数据。
 
原创文章,转载请注明出自:http://blog.csdn.net/oopsoom/article/details/26001307

hive lateral view 与 explode详解的更多相关文章

  1. hive中的lateral view 与 explode函数的使用

    hive中的lateral view 与 explode函数的使用 背景介绍: explode与lateral view在关系型数据库中本身是不该出现的. 因为他的出现本身就是在操作不满足第一范式的数 ...

  2. 【Hive学习之六】Hive Lateral View &视图&索引

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 apache-hive-3.1.1 ...

  3. hive中,lateral view 与 explode函数

    hive中常规处理json数据,array类型json用get_json_object(#,"$.#")这个方法足够了,map类型复合型json就需要通过数据处理才能解析. exp ...

  4. Hive lateral view explode

    select 'hello', x from dual lateral view explode(array(1,2,3,4,5)) vt as x 结果是: hello   1 hello   2 ...

  5. 大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 图文详解

    引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单 ...

  6. Asp.Net MVC part2 View、Controller详解

    View详解Razor视图引擎简介HtmlHelper强类型页面 Razor视图引擎简介强大的@:表示使用C#代码,相当于aspx中的<%%>可以完成输出功能当遇到html标签时会认为C# ...

  7. Hive Lateral View

    一.简介 1.Lateral View 用于和UDTF函数[explode,split]结合来使用. 2.首先通过UDTF函数将数据拆分成多行,再将多行结果组合成一个支持别名的虚拟表. 3.主要解决在 ...

  8. Hive存储格式之ORC File详解,什么是ORC File

    目录 概述 文件存储结构 Stripe Index Data Row Data Stripe Footer 两个补充名词 Row Group Stream File Footer 条纹信息 列统计 元 ...

  9. Hive on Spark安装配置详解(都是坑啊)

    个人主页:http://www.linbingdong.com 简书地址:http://www.jianshu.com/p/a7f75b868568 简介 本文主要记录如何安装配置Hive on Sp ...

随机推荐

  1. JS 缓存

    JSON.stringify() 方法用于将 JavaScript 值转换为 JSON 字符串. 例: JSON.parse(jsonstr); //可以将json字符串转换成json对象 JSON. ...

  2. oracle误删数据

    表名:SYS_MENU alter table SYS_MENU enable row movementflashback table SYS_MENU to timestamp to_timesta ...

  3. 基于nginx + lua实现的反向代理动态更新

    大家都知道,nginx是当前应用非常广泛的web服务器,热度因为他的高并发高性能高可靠性,且轻量级!牛逼的不行,不多说这些. 今天要介绍的是,如何基于nginx和lua脚本,也就是在openresty ...

  4. SystemParametersinfo 用法

    var   BmpPath: PChar; begin   BmpPath := 'C:\Temp\Test.bmp';   SystemParametersInfo(SPI_SETDESKWALLP ...

  5. c# .net WebRequest 始终报域名无法解析

    更改本机DNS,flushdns也没效果. 最后通过改.config 禁用代理后正常. (或:WebRequest.Proxy=null;)

  6. PREV-4_蓝桥杯_剪格子

    问题描述 如下图所示,3 x 3 的格子中填写了一些整数. +--*--+--+|10* 1|52|+--****--+|20|30* 1|*******--+| 1| 2| 3|+--+--+--+ ...

  7. MongDB备份error: boost::filesystem::create_directory

    用dump 备份一直提示一个error "error: boost::filesystem::create_directory: The filename, directory name, ...

  8. spring AOP 之一:spring AOP功能介绍

    一.AOP简介 AOP:是一种面向切面的编程范式,是一种编程思想,旨在通过分离横切关注点,提高模块化,可以跨越对象关注点.Aop的典型应用即spring的事务机制,日志记录.利用AOP可以对业务逻辑的 ...

  9. 解决wordpress文章归档和分类目录小工具标题重复问题

    最近更新了wordpress,发现更新后小工具中的文章归档和分类目录出现了标题重复,经检查,是部分主题下,主题的代码已经输出了标题,而wordpress的代码又再次输出了一次.于是我们需要删除word ...

  10. [UE4]Make Array创建数组,而不是定义数组

    当不想新建一个数组对象的时候,就可以使用“Make Array”创建一个数组