using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace SlopeOne
{
    public class Rating
    {
        public float Value { get; set; }
        public int Freq { get; set; }

public float AverageValue
        {
            get { return Value / Freq; }
        }
    }

public class RatingDifferenceCollection : Dictionary<string, Rating>
    {
        private string GetKey(int Item1Id, int Item2Id)
        {
            return (Item1Id < Item2Id) ? Item1Id + "/" + Item2Id : Item2Id + "/" + Item1Id ;
        }

public bool Contains(int Item1Id, int Item2Id)
        {
            return this.Keys.Contains<string>(GetKey(Item1Id, Item2Id));
        }

public Rating this[int Item1Id, int Item2Id]
        {
            get {
                    return this[this.GetKey(Item1Id, Item2Id)];
            }
            set { this[this.GetKey(Item1Id, Item2Id)] = value; }
        }
    }

public class SlopeOne
    {       
       
public RatingDifferenceCollection _DiffMarix = new
RatingDifferenceCollection();  // The dictionary to keep the diff matrix
        public HashSet<int> _Items = new HashSet<int>();  // Tracking how many items totally

public void AddUserRatings(IDictionary<int, float> userRatings)
        {
            foreach (var item1 in userRatings)
            {
                int item1Id = item1.Key;
                float item1Rating = item1.Value;
                _Items.Add(item1.Key);

foreach (var item2 in userRatings)
                {
                    if (item2.Key <= item1Id) continue; // Eliminate redundancy
                    int item2Id = item2.Key;
                    float item2Rating = item2.Value;

Rating ratingDiff;
                    if (_DiffMarix.Contains(item1Id, item2Id))
                    {
                        ratingDiff = _DiffMarix[item1Id, item2Id];
                    }
                    else
                    {
                        ratingDiff = new Rating();
                        _DiffMarix[item1Id, item2Id] = ratingDiff;
                    }

ratingDiff.Value += item1Rating - item2Rating;
                    ratingDiff.Freq += 1;
                }
            }
        }

// Input ratings of all users
        public void AddUerRatings(IList<IDictionary<int, float>> Ratings)
        {
            foreach(var userRatings in Ratings)
            {
                AddUserRatings(userRatings);
            }
        }

public IDictionary<int, float> Predict(IDictionary<int, float> userRatings)
        {
            Dictionary<int, float> Predictions = new Dictionary<int, float>();
            foreach (var itemId in this._Items)
            {
                if (userRatings.Keys.Contains(itemId))    continue; // User has rated this item, just skip it

Rating itemRating = new Rating();

foreach (var userRating in userRatings)
                {
                    if (userRating.Key == itemId) continue;
                    int inputItemId = userRating.Key;
                    if (_DiffMarix.Contains(itemId, inputItemId))
                    {
                        Rating diff = _DiffMarix[itemId, inputItemId];
                       
itemRating.Value += diff.Freq * (userRating.Value + diff.AverageValue *
((itemId < inputItemId) ? 1 : -1));
                        itemRating.Freq += diff.Freq;
                    }
                }
                Predictions.Add(itemId, itemRating.AverageValue);               
            }
            return Predictions;
        }

public static void Test()
        {
            SlopeOne test = new SlopeOne();

Dictionary<int, float> userRating = new Dictionary<int, float>();
            userRating.Add(1, 5);
            userRating.Add(2, 4);
            userRating.Add(3, 4);
            test.AddUserRatings(userRating);

userRating = new Dictionary<int, float>();
            userRating.Add(1, 4);
            userRating.Add(2, 5);
            userRating.Add(3, 3);
            userRating.Add(4, 5);
            test.AddUserRatings(userRating);

userRating = new Dictionary<int, float>();
            userRating.Add(1, 4);
            userRating.Add(2, 4);
            userRating.Add(4, 5);
            test.AddUserRatings(userRating);

userRating = new Dictionary<int, float>();
            userRating.Add(1, 5);
            userRating.Add(3, 4);

IDictionary<int, float> Predictions = test.Predict(userRating);
            foreach (var rating in Predictions)
            {
                Console.WriteLine("Item " + rating.Key + " Rating: " + rating.Value);
            }
        }
    }
}

C#实现的协同过滤算法的更多相关文章

  1. SVD++:推荐系统的基于矩阵分解的协同过滤算法的提高

    1.背景知识 在讲SVD++之前,我还是想先回到基于物品相似的协同过滤算法.这个算法基本思想是找出一个用户有过正反馈的物品的相似的物品来给其作为推荐.其公式为:

  2. GBDT(Gradient Boosting Decision Tree)算法&协同过滤算法

    GBDT(Gradient Boosting Decision Tree)算法参考:http://blog.csdn.net/dark_scope/article/details/24863289 理 ...

  3. Spark机器学习之协同过滤算法

    Spark机器学习之协同过滤算法 一).协同过滤 1.1 概念 协同过滤是一种借助"集体计算"的途径.它利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度.其内在思想是相 ...

  4. Collaborative Filtering(协同过滤)算法详解

    基本思想 基于用户的协同过滤算法是通过用户的历史行为数据发现用户对商品或内容的喜欢(如商品购买,收藏,内容评论或分享),并对这些喜好进行度量和打分.根据不同用户对相同商品或内容的态度和偏好程度计算用户 ...

  5. 【机器学习笔记一】协同过滤算法 - ALS

    参考资料 [1]<Spark MLlib 机器学习实践> [2]http://blog.csdn.net/u011239443/article/details/51752904 [3]线性 ...

  6. Spark机器学习(11):协同过滤算法

    协同过滤(Collaborative Filtering,CF)算法是一种常用的推荐算法,它的思想就是找出相似的用户或产品,向用户推荐相似的物品,或者把物品推荐给相似的用户.怎样评价用户对商品的偏好? ...

  7. 亚马逊 协同过滤算法 Collaborative filtering

    这节课时郭强的三维课.他讲的是MAYA和max .自己对这个也不怎么的感兴趣.而且这个课感觉属于数字媒体.自己对游戏,动画,这些东西一点都不兴趣,比如大一的时候刚开学的时候,张瑞的数字媒体的导论课.还 ...

  8. win7下使用Taste实现协同过滤算法

    如果要实现Taste算法,必备的条件是: 1) JDK,使用1.6版本.需要说明一下,因为要基于Eclipse构建,所以在设置path的值之前要先定义JAVA_HOME变量. 2) Maven,使用2 ...

  9. Slope one—个性化推荐中最简洁的协同过滤算法

    Slope One 是一系列应用于 协同过滤的算法的统称.由 Daniel Lemire和Anna Maclachlan于2005年发表的论文中提出. [1]有争议的是,该算法堪称基于项目评价的non ...

  10. Mahout实现基于用户的协同过滤算法

    Mahout中对协同过滤算法进行了封装,看一个简单的基于用户的协同过滤算法. 基于用户:通过用户对物品的偏好程度来计算出用户的在喜好上的近邻,从而根据近邻的喜好推测出用户的喜好并推荐. 图片来源 程序 ...

随机推荐

  1. JS 格林威治时间格式(GMT)格式化

    Date.prototype.format = function (format) { var o = { "M+": this.getMonth() + 1, //month & ...

  2. js 时间格式与时间戳的相互转换示例代码

    一.时间转换时间戳 function transdate(endTime){ var date=new Date(); date.setFullYear(endTime.substring(0,4)) ...

  3. TCP连接与OKHTTP复用连接池

    Android网络编程(八)源码解析OkHttp后篇[复用连接池] 1.引子 在了解OkHttp的复用连接池之前,我们首先要了解几个概念. TCP三次握手 通常我们进行HTTP连接网络的时候我们会进行 ...

  4. Java - "JUC线程池" 线程状态与拒绝策略源码分析

    Java多线程系列--“JUC线程池”04之 线程池原理(三) 本章介绍线程池的生命周期.在"Java多线程系列--“基础篇”01之 基本概念"中,我们介绍过,线程有5种状态:新建 ...

  5. SQL Server 如何添加删除外键、主键,以及更新自增属性

    1.添加删除主键和外键 例如: -----删除主键约束DECLARE @NAME SYSNAMEDECLARE @TB_NAME SYSNAMESET @TB_NAME = 'Date'SELECT ...

  6. WebKit的Platform接口部分

    转载请注明出处:http://www.cnblogs.com/fangkm/p/3787977.html WebKit中解析.渲染网页的过程中需要一些功能,比如: socket连接.URL资源请求的实 ...

  7. python基础技巧综合训练题1

    1,大小写翻转 >>> str='hello,GhostWU' >>> str.swapcase() 'HELLO,gHOSTwu' 2,从一串字符串中,提取纯数字 ...

  8. Jquery封装(学习)01

    1.在开发过程中,我们有时候会经常用到重复的jquey代码,最常见的是我们那里需要就再哪里复制粘贴,这样大大增加了冗余代码,维护起来也不方便.我们何不把共同的jquery代码封装起来,哪里需要就哪里调 ...

  9. 5月23日——SPA单页面应用的原理

    一.什么是SPA(SPA 的概念) 单页 Web 应用 (single-page application 简称为 SPA),简单理解为:仅仅在web页面初始化时加载相应的HTML.JavaScript ...

  10. js-ES6学习笔记-async函数(3)

    1.await命令后面的Promise对象,运行结果可能是rejected,所以最好把await命令放在try...catch代码块中. 2.多个await命令后面的异步操作,如果不存在继发关系,最好 ...