Marriage Match II

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4248    Accepted Submission(s): 1406

Problem Description

Presumably, you all have known the question of stable marriage match. A girl will choose a boy; it is similar as the game of playing house we used to play when we are kids. What a happy time as so many friends playing together. And it is normal that a fight or a quarrel breaks out, but we will still play together after that, because we are kids. 
Now, there are 2n kids, n boys numbered from 1 to n, and n girls numbered from 1 to n. you know, ladies first. So, every girl can choose a boy first, with whom she has not quarreled, to make up a family. Besides, the girl X can also choose boy Z to be her boyfriend when her friend, girl Y has not quarreled with him. Furthermore, the friendship is mutual, which means a and c are friends provided that a and b are friends and b and c are friend. 
Once every girl finds their boyfriends they will start a new round of this game—marriage match. At the end of each round, every girl will start to find a new boyfriend, who she has not chosen before. So the game goes on and on.
Now, here is the question for you, how many rounds can these 2n kids totally play this game?
 

Input

There are several test cases. First is a integer T, means the number of test cases. 
Each test case starts with three integer n, m and f in a line (3<=n<=100,0<m<n*n,0<=f<n). n means there are 2*n children, n girls(number from 1 to n) and n boys(number from 1 to n).
Then m lines follow. Each line contains two numbers a and b, means girl a and boy b had never quarreled with each other. 
Then f lines follow. Each line contains two numbers c and d, means girl c and girl d are good friends.
 

Output

For each case, output a number in one line. The maximal number of Marriage Match the children can play.
 

Sample Input

1
4 5 2
1 1
2 3
3 2
4 2
4 4
1 4
2 3
 

Sample Output

2
 

Author

starvae
 

Source

 
起初做法:
S-girl和boy-T连边,容量n;
girl和所有能匹配的boy连边,容量1;
然后跑一次最大流,答案为S-girl和boy-T的边中流量的最小值。
 
但是,发现反例:
1
3 4 0
1 2
2 1
2 3
3 2
答案应该是0,但用上述方法答案为1。
 
所以需要二分答案,即二分S-girl和boy-T连边的容量mid,建图跑最大流,若mid*n == maxflow,表示可以进行mid轮游戏,继续二分。
 
 //2017-08-25
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
#define mid ((l+r)>>1) using namespace std; const int N = ;
const int M = ;
const int INF = 0x3f3f3f3f;
int head[N], tot;
struct Edge{
int next, to, w;
}edge[M]; void add_edge(int u, int v, int w){
edge[tot].w = w;
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++; edge[tot].w = ;
edge[tot].to = u;
edge[tot].next = head[v];
head[v] = tot++;
} struct Dinic{
int level[N], S, T;
void init(int _S, int _T){
S = _S;
T = _T;
tot = ;
memset(head, -, sizeof(head));
}
bool bfs(){
queue<int> que;
memset(level, -, sizeof(level));
level[S] = ;
que.push(S);
while(!que.empty()){
int u = que.front();
que.pop();
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
int w = edge[i].w;
if(level[v] == - && w > ){
level[v] = level[u]+;
que.push(v);
}
}
}
return level[T] != -;
}
int dfs(int u, int flow){
if(u == T)return flow;
int ans = , fw;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to, w = edge[i].w;
if(!w || level[v] != level[u]+)
continue;
fw = dfs(v, min(flow-ans, w));
ans += fw;
edge[i].w -= fw;
edge[i^].w += fw;
if(ans == flow)return ans;
}
if(ans == )level[u] = ;
return ans;
}
int maxflow(){
int flow = ;
while(bfs())
flow += dfs(S, INF);
return flow;
}
}dinic; bool G[N][N];
int T, n, m, f;
int never_quarreled[M][], friends[M][];
void build_graph(int cap){
int s = , t = *n+;
dinic.init(s, t);
memset(G, , sizeof(G));
int a, b;
for(int i = ; i < m; i++){
a = never_quarreled[i][];
b = never_quarreled[i][];
add_edge(a, n+b, );
G[a][b] = ;
}
for(int i = ; i < f; i++){
a = friends[i][];
b = friends[i][];
for(int i = head[a]; i != -; i = edge[i].next){
int v = edge[i].to;
if(!G[b][v-n] && v != s && v != t){
add_edge(b, v, );
G[b][v-n] = ;
}
}
for(int i = head[b]; i != -; i = edge[i].next){
int v = edge[i].to;
if(!G[a][v-n] && v != s && v != t){
add_edge(a, v, );
G[a][v-n] = ;
}
}
}
for(int i = ; i <= n; i++){
add_edge(s, i, cap);
add_edge(n+i, t, cap);
}
} int main()
{
std::ios::sync_with_stdio(false);
//freopen("inputN.txt", "r", stdin);
cin>>T;
while(T--){
cin>>n>>m>>f;
for(int i = ; i < m; i++)
cin>>never_quarreled[i][]>>never_quarreled[i][];
for(int i = ; i < f; i++)
cin>>friends[i][]>>friends[i][];
int l = , r = n, ans = ;
while(l <= r){
build_graph(mid);
int flow = dinic.maxflow();
if(flow == mid*n){
ans = mid;
l = mid+;
}else{
r = mid-;
}
}
cout<<ans<<endl;
}
return ;
}

HDU3081(KB11-N 二分答案+最大流)的更多相关文章

  1. BZOJ 1570: [JSOI2008]Blue Mary的旅行( 二分答案 + 最大流 )

    二分答案, 然后对于答案m, 把地点分成m层, 对于边(u, v), 第x层的u -> 第x+1层的v 连边. 然后第x层的u -> 第x+1层的u连边(+oo), S->第一层的1 ...

  2. BZOJ 1738: [Usaco2005 mar]Ombrophobic Bovines 发抖的牛( floyd + 二分答案 + 最大流 )

    一道水题WA了这么多次真是.... 统考终于完 ( 挂 ) 了...可以好好写题了... 先floyd跑出各个点的最短路 , 然后二分答案 m , 再建图. 每个 farm 拆成一个 cow 点和一个 ...

  3. BZOJ 1305 CQOI2009 dance跳舞 二分答案+最大流

    题目大意:给定n个男生和n个女生,一些互相喜欢而一些不.举行几次舞会,每次舞会要配成n对.不能有同样的组合出现.每一个人仅仅能与不喜欢的人跳k次舞,求最多举行几次舞会 将一个人拆成两个点.点1向点2连 ...

  4. BZOJ2547 CTSC2002玩具兵(最短路径+二分答案+最大流)

    先不考虑只有一个显得有些特殊的天兵. 可以发现超能力的作用实质上是使兵更换职业.每一个兵到达某个位置最少需要更换职业的次数是彼此独立的,因为如果需要某两人互换职业可以使他们各自以当前职业到达需要到的地 ...

  5. Gym - 101908G 二分答案+最大流

    After the end of the truck drivers' strike, you and the rest of Nlogônia logistics specialists now h ...

  6. 紫书 习题 11-10 UVa 12264 (二分答案+最大流)

    书上写的是UVa 12011, 实际上是 12264 参考了https://blog.csdn.net/xl2015190026/article/details/51902823 这道题就是求出一种最 ...

  7. luoguP1401 城市(二分答案+最大流)

    题意 N(2<=n<=200)个城市,M(1<=m<=40000)条无向边,你要找T(1<=T<=200)条从城市1到城市N的路,使得最长的边的长度最小,边不能重复 ...

  8. Marriage Match II 【HDU - 3081】【并查集+二分答案+最大流】

    题目链接 一开始是想不断的把边插进去,然后再去考虑我们每次都加进去边权为1的边,直到跑到第几次就没法继续跑下去的这样的思路,果不其然的T了. 然后,就是想办法咯,就想到了二分答案. 首先,我们一开始处 ...

  9. bzoj 3993 星际战争 - 二分答案 - 最大流

    3333年,在银河系的某星球上,X军团和Y军团正在激烈地作战.在战斗的某一阶段,Y军团一共派遣了N个巨型机器人进攻X军团的阵地,其中第i个巨型机器人的装甲值为Ai.当一个巨型机器人的装甲值减少到0或者 ...

随机推荐

  1. UOJ#419. 【集训队作业2018】圆形(格林公式)

    题面 传送门 题解 首先您得会用格林公式计算圆的面积并 这里只需要动态维护一下圆弧就可以了 时间复杂度\(O(n^2\log n)\) //minamoto #include<bits/stdc ...

  2. 前端基础-html 列表标签,表格标签,表单标签

    一.列表标签 1.ul(无序列表)标签 ul(unordered list)无序列表,ul下的子元素只能是li(list item),如下示例: <ul> <li>第一项< ...

  3. .NET Core 从1.1升级到2.0记录(Cookie中间件踩坑)

    .NET Core 2.0 新时代 万众瞩目的.NET Core 2.0终于发布了,原定于9.19的dotnetconf大会的发布时间大大提前了1个月,.NET Core 2.0/.NET Stand ...

  4. Spring Boot中使用Swagger2构建RESTful API文档

    在开发rest api的时候,为了减少与其他团队平时开发期间的频繁沟通成本,传统做法我们会创建一份RESTful API文档来记录所有接口细节,然而这样的做法有以下几个问题: 1.由于接口众多,并且细 ...

  5. 移动一根火柴使等式成立js版本

    <html><head><meta http-equiv="Content-Type" content="text/html; charse ...

  6. iOS开发之Todo List for Swift项目

    一直从事Windows Phone开发,但对iOS开发一直有所好奇,于是在MBP到手之际,顺手安装了Xcode.移动互联网开发的相似性,使得我能快速地了解和认识了iOS的开发框架体系,在看完了Appl ...

  7. 装饰器中的@functools.wraps的作用

    def login_required(view_func): @functools.wraps(view_func) def wrapper(*args, **kwargs): ...... retu ...

  8. WebDriver高级应用实例(5)

    5.1对象库(UI Map) 目的:能够使用配置文件存储被测试页面上的元素的定位方式和定位表达式,做到定位数据和程序的分离.方便不具备编码能力的测试人员进行修改和配置. 被测网页的网址: http:/ ...

  9. dubbo管控台安装

    1. jdk安装 #  cp installpkgs/jdk-7u67-linux-x64_tar_gz /usr/local #  tar -zxf jdk-7u67-linux-x64_tar_g ...

  10. 安装ORACLE时 各Linux版本下载地址

    oracle linux :https://edelivery.oracle.com/osdc/faces/SearchSoftware 需要注册oracle账号 redhat官方下载 https:/ ...