一、Benchmark简介
Benchmark是一个评价方式,在整个计算机领域有着长期的应用。正如维基百科上的解释“As computer architecture advanced, it became more difficult to compare the performance of various computer systems simply by looking at their specifications.Therefore, tests were developed that allowed comparison of different architectures.”Benchmark在计算机领域应用最成功的就是性能测试,主要测试负载的执行时间、传输速度、吞吐量、资源占用率等。
性能调优的两大利器是Benchmark和profile工具。Benchmark用压力测试挖掘整个系统的性能状况,而profile工具最大限度地呈现系统的运行状态和性能指标,方便用户诊断性能问题和进行调优。
二、Benchmark的组成
Benchmark的核心由3部分组成:数据集、 工作负载、度量指标。
1、数据集
数据类型分为结构化数据、半结构化数据和非结构化数据。由于大数据环境下的数据类型复杂,负载多样,所以大数据Benchmark需要生成3种类型的数据和对应负载。
1)结构化数据:传统的关系数据模型,可用二维表结构表示。典型场景有电商交易、财务系统、医疗HIS数据库、政务信息化系统等等;
2)半结构化数据:类似XML、HTML之类,自描述,数据结构和内容混杂在一起。典型应用场景有邮件系统、Web搜索引擎存储、教学资源库、档案系统等等,可以考虑使用Hbase等典型的KeyValue存储;
3)非结构化数据:各种文档、图片、视频和音频等。典型的应用有视频网站、图片相册、交通视频监控等等。
2、工作负载
互联网领域数据庞大,用户量大,成为大数据问题产生的天然土壤。对工作负载理解和设计可以从以下几个维度来看
1)密集计算类型:CPU密集型计算、IO密集型计算、网络密集型计算;
2)计算范式:SQL、批处理、流计算、图计算、机器学习;
3)计算延迟:在线计算、离线计算、实时计算;
4)应用领域:搜索引擎、社交网络、电子商务、地理位置、媒体、游戏。
3、度量指标
性能高估的两大利器就是Benchmark和Profile工具。Benchmark用压力测试挖掘整个系统的性能状况,而Profile工具最大限度地呈现系统的运行时状态和性能指标,方便用户诊断性能问题和进行调优。
1)工具的使用
a)在架构层面:perf、nmon等工具和命令;
b)在JVM层面:btrace、Jconsole、JVisualVM、JMap、JStack等工具和命令;
c)在Spark层面:web ui、console log,也可以修改Spark源码打印日志进行性能监控。
2)度量指标
a)从架构角度度量:浮点型操作密度、整数型操作密度、指令中断、cache命中率、TLB命中;
b)从Spark系统执行时间和吞吐的角度度量:Job作业执行时间、Job吞吐量、Stage执行时间、Stage吞吐量、Task执行时间、Task吞吐量;
c)从Spark系统资源利用率的角度度量:CPU在指定时间段的利用率、内存在指定时间段的利用率、磁盘在指定时间段的利用率、网络带宽在指定时间段的利用率;
d)从扩展性的角度度量:数据量扩展、集群节点数据扩展(scale out)、单机性能扩展(scale up)。
三、Benchmark的运用
1、Hibench:由Intel开发的针对Hadoop的基准测试工具,开源的,用户可以到Github库中下载
2、Berkeley BigDataBench:随着Spark的推出,由AMPLab开发的一套大数据基准测试工具,官网介绍
3、Hadoop GridMix:Hadoop自带的Benchmark,作为Hadoop自带的测试工具使用方便、负载经典,应用广泛
4、Bigbench:由Teradata、多伦多大学、InfoSizing、Oracle开发,其设计思想和利用扩展具有研究价值,可以参阅论文Bigbench:Towards an industry standard benchmark for big data analytics。
5、BigDataBenchmark:由中科院研发,官方介绍
6、TPC-DS:广泛应用于SQL on Hadoop的产品评测
7、其他的Benchmark:Malstone、Cloud Harmony、YCSB、SWIM、LinkBench、DFSIO、Hive performance Benchmark(Pavlo)等等

Benchmark简介的更多相关文章

  1. Redis性能测试工具benchmark简介

    Redis自己提供了一个性能测试工具redis-benchmark.redis-benchmark可以模拟N个机器,同时发送M个请求. 用法:redis-benchmark [-h -h <ho ...

  2. spark性能测试理论-Benchmark(转)

    一.Benchmark简介Benchmark是一个评价方式,在整个计算机领域有着长期的应用.正如维基百科上的解释“As computer architecture advanced, it becam ...

  3. golang 性能优化分析:benchmark 结合 pprof

    前面 2 篇 golang 性能优化分析系列文章: golang 性能优化分析工具 pprof (上) golang 性能优化分析工具 pprof (下) 一.基准测试 benchmark 简介 在 ...

  4. 《Spark大数据处理:技术、应用与性能优化 》

    基本信息 作者: 高彦杰 丛书名:大数据技术丛书 出版社:机械工业出版社 ISBN:9787111483861 上架时间:2014-11-5 出版日期:2014 年11月 开本:16开 页码:255 ...

  5. 《Spark大数据处理:技术、应用与性能优化》【PDF】 下载

    内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技 ...

  6. 《Spark大数据处理:技术、应用与性能优化》【PDF】

    内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技 ...

  7. 场景分割:MIT Scene Parsing 与DilatedNet 扩展卷积网络

    MIT Scene Parsing Benchmark简介 Scene parsing is to segment and parse an image into different image re ...

  8. Golang 性能优化实战

    小结: 1. 性能查看工具 pprof,trace 及压测工具 wrk 或其他压测工具的使用要比较了解. 代码逻辑层面的走读非常重要,要尽量避免无效逻辑. 对于 golang 自身库存在缺陷的,可以寻 ...

  9. NoSQL和Redis简介及Redis在Windows下的安装和使用教程

    转载于:http://www.itxuexiwang.com/a/shujukujishu/redis/2016/0216/103.html?1455869099 NoSQL简介 介绍redis前,我 ...

随机推荐

  1. 【深入Struts2】获取ServletAPI的三种方式

    一:获取servletAPI的三种方法 在传统的Web开发中,经常会用到Servlet API中的HttpServletRequest.HttpSession和ServletContext.Strut ...

  2. Win7建立FTP站点

    Win7建立FTP站点 1.到控制面板---程序---打开或关闭windows功能,列表内找到 Internet信息服务(展开)---选中FTP的三个项: 2.到控制面板---系统和安全---管理工具 ...

  3. 西安电子科技大学第16届程序设计竞赛网络同步赛 G-小国的复仇

    sb找规律. 分解因数. #include<bits/stdc++.h> #define LL long long #define fi first #define se second # ...

  4. hive的实现机制

    hive利用hdfs存储数据文件,利用MapReduce查询数据. 数据库:支持在线联机业务(实时.事务控制) 数据仓库:存储历史数据,面向主题的.主要用于离线数据分析的.

  5. PHP SMTP邮件发送(可加附件)

    <?php /** * @param $address mixed 收件人 多个收件人/或需要设置收件人昵称时为数组 array($address1,$address1)/array(array ...

  6. 转载-解决ORACLE 在控制台进行exp,导出时,空表不能导出

    一.问题原因: 11G中有个新特性,当表无数据时,不分配segment,以节省空间 1.insert一行,再rollback就产生segment了. 该方法是在在空表中插入数据,再删除,则产生segm ...

  7. js数据结构之列表的详细实现方法

    * 列表用于存放数据量较少的数据结构* 当数据量较大时,不需要对其进行查找.排序的情况下,使用列表也比较方便. 本数据结构在node环境下运行,需要对node有个基本是了解. 1. listSize: ...

  8. 大数据技术之_14_Oozie学习_Oozie 的简介+Oozie 的功能模块介绍+Oozie 的部署+Oozie 的使用案列

    第1章 Oozie 的简介第2章 Oozie 的功能模块介绍2.1 模块2.2 常用节点第3章 Oozie 的部署3.1 部署 Hadoop(CDH版本的)3.1.1 解压缩 CDH 版本的 hado ...

  9. 4,EasyNetQ-Request Response

    EasyNetQ还支持请求/响应消息传递模式. 这使得客户端/服务器应用程序变得容易,客户机/服务器应用程序在客户端向服务器发出请求,然后处理请求并返回响应. 与传统的RPC机制不同,EasyNetQ ...

  10. Nmap扫描教程之基础扫描详解

    Nmap扫描教程之基础扫描详解 Nmap扫描基础扫描 当用户对Nmap工具了解后,即可使用该工具实施扫描.通过上一章的介绍,用户可知Nmap工具可以分别对主机.端口.版本.操作系统等实施扫描.但是,在 ...