Benchmark简介
一、Benchmark简介
Benchmark是一个评价方式,在整个计算机领域有着长期的应用。正如维基百科上的解释“As computer architecture advanced, it became more difficult to compare the performance of various computer systems simply by looking at their specifications.Therefore, tests were developed that allowed comparison of different architectures.”Benchmark在计算机领域应用最成功的就是性能测试,主要测试负载的执行时间、传输速度、吞吐量、资源占用率等。
性能调优的两大利器是Benchmark和profile工具。Benchmark用压力测试挖掘整个系统的性能状况,而profile工具最大限度地呈现系统的运行状态和性能指标,方便用户诊断性能问题和进行调优。
二、Benchmark的组成
Benchmark的核心由3部分组成:数据集、 工作负载、度量指标。
1、数据集
数据类型分为结构化数据、半结构化数据和非结构化数据。由于大数据环境下的数据类型复杂,负载多样,所以大数据Benchmark需要生成3种类型的数据和对应负载。
1)结构化数据:传统的关系数据模型,可用二维表结构表示。典型场景有电商交易、财务系统、医疗HIS数据库、政务信息化系统等等;
2)半结构化数据:类似XML、HTML之类,自描述,数据结构和内容混杂在一起。典型应用场景有邮件系统、Web搜索引擎存储、教学资源库、档案系统等等,可以考虑使用Hbase等典型的KeyValue存储;
3)非结构化数据:各种文档、图片、视频和音频等。典型的应用有视频网站、图片相册、交通视频监控等等。
2、工作负载
互联网领域数据庞大,用户量大,成为大数据问题产生的天然土壤。对工作负载理解和设计可以从以下几个维度来看
1)密集计算类型:CPU密集型计算、IO密集型计算、网络密集型计算;
2)计算范式:SQL、批处理、流计算、图计算、机器学习;
3)计算延迟:在线计算、离线计算、实时计算;
4)应用领域:搜索引擎、社交网络、电子商务、地理位置、媒体、游戏。
3、度量指标
性能高估的两大利器就是Benchmark和Profile工具。Benchmark用压力测试挖掘整个系统的性能状况,而Profile工具最大限度地呈现系统的运行时状态和性能指标,方便用户诊断性能问题和进行调优。
1)工具的使用
a)在架构层面:perf、nmon等工具和命令;
b)在JVM层面:btrace、Jconsole、JVisualVM、JMap、JStack等工具和命令;
c)在Spark层面:web ui、console log,也可以修改Spark源码打印日志进行性能监控。
2)度量指标
a)从架构角度度量:浮点型操作密度、整数型操作密度、指令中断、cache命中率、TLB命中;
b)从Spark系统执行时间和吞吐的角度度量:Job作业执行时间、Job吞吐量、Stage执行时间、Stage吞吐量、Task执行时间、Task吞吐量;
c)从Spark系统资源利用率的角度度量:CPU在指定时间段的利用率、内存在指定时间段的利用率、磁盘在指定时间段的利用率、网络带宽在指定时间段的利用率;
d)从扩展性的角度度量:数据量扩展、集群节点数据扩展(scale out)、单机性能扩展(scale up)。
三、Benchmark的运用
1、Hibench:由Intel开发的针对Hadoop的基准测试工具,开源的,用户可以到Github库中下载
2、Berkeley BigDataBench:随着Spark的推出,由AMPLab开发的一套大数据基准测试工具,官网介绍
3、Hadoop GridMix:Hadoop自带的Benchmark,作为Hadoop自带的测试工具使用方便、负载经典,应用广泛
4、Bigbench:由Teradata、多伦多大学、InfoSizing、Oracle开发,其设计思想和利用扩展具有研究价值,可以参阅论文Bigbench:Towards an industry standard benchmark for big data analytics。
5、BigDataBenchmark:由中科院研发,官方介绍
6、TPC-DS:广泛应用于SQL on Hadoop的产品评测
7、其他的Benchmark:Malstone、Cloud Harmony、YCSB、SWIM、LinkBench、DFSIO、Hive performance Benchmark(Pavlo)等等
Benchmark简介的更多相关文章
- Redis性能测试工具benchmark简介
Redis自己提供了一个性能测试工具redis-benchmark.redis-benchmark可以模拟N个机器,同时发送M个请求. 用法:redis-benchmark [-h -h <ho ...
- spark性能测试理论-Benchmark(转)
一.Benchmark简介Benchmark是一个评价方式,在整个计算机领域有着长期的应用.正如维基百科上的解释“As computer architecture advanced, it becam ...
- golang 性能优化分析:benchmark 结合 pprof
前面 2 篇 golang 性能优化分析系列文章: golang 性能优化分析工具 pprof (上) golang 性能优化分析工具 pprof (下) 一.基准测试 benchmark 简介 在 ...
- 《Spark大数据处理:技术、应用与性能优化 》
基本信息 作者: 高彦杰 丛书名:大数据技术丛书 出版社:机械工业出版社 ISBN:9787111483861 上架时间:2014-11-5 出版日期:2014 年11月 开本:16开 页码:255 ...
- 《Spark大数据处理:技术、应用与性能优化》【PDF】 下载
内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技 ...
- 《Spark大数据处理:技术、应用与性能优化》【PDF】
内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技 ...
- 场景分割:MIT Scene Parsing 与DilatedNet 扩展卷积网络
MIT Scene Parsing Benchmark简介 Scene parsing is to segment and parse an image into different image re ...
- Golang 性能优化实战
小结: 1. 性能查看工具 pprof,trace 及压测工具 wrk 或其他压测工具的使用要比较了解. 代码逻辑层面的走读非常重要,要尽量避免无效逻辑. 对于 golang 自身库存在缺陷的,可以寻 ...
- NoSQL和Redis简介及Redis在Windows下的安装和使用教程
转载于:http://www.itxuexiwang.com/a/shujukujishu/redis/2016/0216/103.html?1455869099 NoSQL简介 介绍redis前,我 ...
随机推荐
- Educational Codeforces Round 41 (Rated for Div. 2)
这场没打又亏疯了!!! A - Tetris : 类似俄罗斯方块,模拟一下就好啦. #include<bits/stdc++.h> #define fi first #define se ...
- mysql 账号授权
一.移除权限 revoke all privileges on py_bond_2_1.* from pycf@"%"; flush privileges; 二.添加用户并授权 g ...
- 使用eclipse svn塔建(配置)时的一点点心得
有没有人遇到下面这种情况??自己创建的SVN如下: 但网上别人搭建好的是这样子的: 就是为什么我的只有个主文件,而没有src.webroot.meta-inf.web-inf等子文件呢?? 这是我找了 ...
- Linux-C网络编程
简介 基础是TCP/IP协议,网上资料很多不再赘述. 推荐<图解TCP/IP> socket编程 网络字节序 发送主机通常将发送缓冲区中的数据按内存地址从低到高的顺序发出, 接收主机把从网 ...
- android Service oncreate 在UI线程 何时用service,何时用thread
韩梦飞沙 韩亚飞 313134555@qq.com yue31313 han_meng_fei_sha 服务的生命周期 各个方法 都是在主线程中的. 这里的操作可以导致主线程阻塞. 这些方法, ...
- notepad++ 如何选择10000行-20000行之间的文本?
最近要上传导入一批数据,但是数据太多,一次上传不了,所以就要分批上传,而且数据全部在一个txt里面,这时就想一次复制一部分出来导入,直到导入完成,但是问题来了,数据太多,选择1到10000行,鼠标要拉 ...
- 2018-2019-20172329 《Java软件结构与数据结构》第五周学习总结
2018-2019-20172329 <Java软件结构与数据结构>第五周学习总结 教材学习内容总结 <Java软件结构与数据结构>第九章-排序与查找 一.查找 1.查找概念简 ...
- 吴恩达-coursera-机器学习-week10
十七.大规模机器学习(Large Scale Machine Learning) 17.1 大型数据集的学习 17.2 随机梯度下降法 17.3 小批量梯度下降 17.4 随机梯度下降收敛 17.5 ...
- 【转】NHibernate对象以及状态说明
对象 ISessionFactory (NHibernate.ISessionFactory) 针对单个数据库映射关系经过编译后的内存镜像,是线程安全的(不可变). 它是生成ISession的工厂,本 ...
- 使用 IntraWeb (15) - 基本控件之 TIWEdit、TIWMemo、TIWText
TIWEdit //单行文本框, 通过 PasswordPrompt 属性可以作为密码框 TIWMemo //多行文本框 TIWText //相当于多行的 TIWLabel 或不能编辑的 TIWMem ...