洛谷P3389 【模板】高斯消元法(+判断是否唯一解)
https://www.luogu.org/problemnew/show/P3389
这里主要说说怎么判断不存在唯一解
我们把每一行的第一个非零元称为关键元
枚举到一个变量,如果剩下的行中该变量的系数都是0,那么这个元素就是一个自由元
若方程组有唯一解,第i行的关键元是第i个
否则,一定至少存在某一行i,它的关键元是第j个(j>i)
具体实现:
假设当前枚举到第i行,我们会把第i行之后的 第i列元素最大的那一行 交换到第i行
只需要换完之后加一个判断:if(fabs(a[r][i])<eps) 即可
#include<cmath>
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 101
const double eps=1e-;
int n;
double a[N][N];
void read(int &x)
{
x=; int f=; char c=getchar();
while(!isdigit(c)) { if(c=='-') f=-; c=getchar(); }
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
x*=f;
}
bool Gauss()
{
int r;
double f;
for(int i=;i<n;++i)
{
r=i;
for(int j=i+;j<n;++j)
if(fabs(a[j][i])>fabs(a[r][i])) r=j;
if(fabs(a[r][i])<eps) return false;
if(r!=i)
for(int j=;j<=n;++j) swap(a[r][j],a[i][j]);
for(int k=i+;k<n;++k)
{
f=a[k][i]/a[i][i];
for(int j=i;j<=n;++j) a[k][j]-=f*a[i][j];
}
}
for(int i=n-;i>=;--i)
{
for(int j=i+;j<n;++j) a[i][n]-=a[j][n]*a[i][j];
a[i][n]/=a[i][i];
}
return true;
}
int main()
{
int x;
read(n);
for(int i=;i<n;++i)
for(int j=;j<=n;++j)
{
read(x);
a[i][j]=x;
}
if(!Gauss()) { puts("No Solution"); return ; }
for(int i=;i<n;++i) printf("%.2lf\n",a[i][n]);
}
洛谷P3389 【模板】高斯消元法(+判断是否唯一解)的更多相关文章
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
- 洛谷-P5357-【模板】AC自动机(二次加强版)
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- 洛谷P3385 [模板]负环 [SPFA]
题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...
- [洛谷P3806] [模板] 点分治1
洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果m ...
随机推荐
- C#_委托
委托属于C#中的新名词,它的应用也非常广泛,例如事件就是委托最简单而又直接的例子. 那么首先说说什么是委托,其实委托在用过C或者C++的人看来就是函数指针,不过使用C#的大多数人都没有用过这两门语言, ...
- 【容器魔方解读】AWS Re:Invent 2018大会
每年云计算领域技术与商业风向标之一的AWS Re:Invent大会上周在美国拉斯维加斯召开,如往届一样,AWS密集发布了上百项的新产品或新技术.随着国内近两年云计算尤其是公有云的普及度越来越高,国内各 ...
- Hyperldeger Fabric踩过的坑
给参与者颁发身份时错误 错误信息: fabric-ca request register failed with errors [[{"code":400,"messag ...
- HAOI2017 新型城市化 二分图的最大独立集+最大流+强连通缩点
题目链接(洛谷):https://www.luogu.org/problemnew/show/P3731 题意概述:给出一张二分图,询问删掉哪些边之后可以使这张二分图的最大独立集变大.N<=10 ...
- 全局最小割StoerWagner算法详解
前言 StoerWagner算法是一个找出无向图全局最小割的算法,本文需要读者有一定的图论基础. 本文大部分内容与词汇来自参考文献(英文,需***),用兴趣的可以去读一下文献. 概念 无向图的割:有无 ...
- Linux第一章第二章学习笔记
第一章 Linux内核简介 1.1 Unix的历史 它是现存操作系统中最强大最优秀的系统. 设计简洁,在发布时提供原代码. 所有东西都被当做文件对待. Unix的内核和其他相关软件是用C语言编写而成的 ...
- process.tar.gz
exec1.c #include <stdio.h> #include <unistd.h> int main() { char *arglist[3]; arglist[0] ...
- SQL Sever——远程过程调用失败(0x800706be)
最近重装了系统,VS和SQL Sever莫名奇妙的不能用了.下面总结一下这个过程中遇到的问题,跟大家分享一下经验~~ 大概是以前的安装过程都十分顺利,这次,在尝试了数次登陆不上去之后,我仍然怀疑是自己 ...
- 20172319 《Java程序设计教程》第7周学习总结
20172319 2018.04.11-16 <Java程序设计教程>第7周学习总结 目录 教材学习内容总结 教材学习中的问题和解决过程 代码调试中的问题和解决过程 代码托管 上周考试错题 ...
- Java之工具类:判断对象是否为空或null
import java.lang.reflect.Array; import java.util.Collection; import java.util.Map; /** * 判断对象是否为空或nu ...