Problem H. Parallel Worlds

题目连接:

http://opentrains.snarknews.info/~ejudge/team.cgi?SID=c75360ed7f2c7022&all_runs=1&action=140

Description

Alex is a Baisuralen State University student. Alex and BSU live in two parallel worlds. As we know from

school geometry classes, parallel lines do not intersect. However, in reality and unfortunately these two

parallel worlds do intersect.

There are some courses in BSU that came from hell. They make parallel worlds intersect and force Alex

to visit lectures. Or even more, they cause pain and humiliation. (It was once even said, that the other

name for course of ‘Functional Analysis’ (shortly FUN) is ‘Pain and Humiliation’. That is, FUN is not

fun.) For example, once Alex slept during such course, and was woken up by professor’s voice. Afterwards

he was asked if he had moved to Banach Space and was told to move to railway station.

Not everything is so bad, however. There are courses that are from heaven. They are finished in any mark

you want without needing to visit them.

You are requested to provide a procedure to establish that some courses are from heaven. As part of that,

you need to provide two sets of points P and Q on a plane, each containing N points. All points in P

and Q should be distinct, and the intersection of P and Q should be empty. Sets P and Q should satisfy

the following property. There should exist N pairwise nonparallel lines, such that sets of projections of P

and Q on these lines coincide. Of course, the lines should also be provided. Moreover, pairs of points that

coincide are also required.

One can show that for any positive integer N such sets of points exist.

Input

The only line of input contains a single number N (1 ≤ N ≤ 100).

Output

Output 3 × N lines.

First N lines should contain two real numbers x

P

i

y

P

i — coordinates of points in set P.

Next N lines should contain two real numbers x

Q

i

y

Q

i — coordinates of points in set Q.

Afterwards output the descriptions of the lines: three real numbers Ai

, Bi and Ci—coefficients of the ith

line (Aix + Biy + Ci = 0), and a permutation of numbers from 1 to N (qi1, qi2, . . . , qiN ) (the projection of

the first point from P should coincide with the projection of the qi1st point of the set Q, the projection

of the second point from P should coincide with the projection of the qi2nd point of Q and so on).

Absolute value of all numbers should not be greater than 106

.

The distance between any two points from P ∪ Q should be at least 1. And P ∩ Q = ∅.

Two lines are considered parallel if the angle between the lines is less than 10−2

rad., or if the cross

product AiBj − BiAj is less than 10−6

.

Two projections coincide if the distance between them is not greater than 10−6

Sample Input

1

Sample Output

0 0

1 0

1 0 0 1

Hint

题意

让你构造两个点集合,各有n个点,且不相交。

然后你需要构造n条直线

然后需要这俩集合中的点,对于每一条线,都能在直线上面的映射相同。

题解:

看着烧脑子,但实际上构造一个正2n边形就好了。

代码

 #include<bits/stdc++.h>
using namespace std;
const double pi = acos(-1.0);
vector<pair<double,double> >P;
vector<pair<double,double> >Q; /* 基本几何结构 */
struct POINT
{
double x;
double y;
POINT(double a=0, double b=0) { x=a; y=b;} //constructor
};
struct LINESEG
{
POINT s;
POINT e;
LINESEG(POINT a, POINT b) { s=a; e=b;}
LINESEG() { }
};
struct LINE // 直线的解析方程 a*x+b*y+c=0 为统一表示,约定 a >= 0
{
double a;
double b;
double c;
LINE(double d1=1, double d2=-1, double d3=0) {a=d1; b=d2; c=d3;}
};
LINE makeline(POINT p1,POINT p2)
{
LINE tl;
int sign = 1;
tl.a=p2.y-p1.y;
if(tl.a<0)
{
sign = -1;
tl.a=sign*tl.a;
}
tl.b=sign*(p1.x-p2.x);
tl.c=sign*(p1.y*p2.x-p1.x*p2.y);
return tl;
}
vector<LINE>AA;
int mp[105];
int main(){
int n;
scanf("%d",&n);
if(n==1){
printf("0 0\n");
printf("1 0\n");
printf("1 0 0 1\n");
return 0;
}
double len = 10000;
double x = pi/n;
POINT AAA,BBB;
for(int i=0;i<2*n;i++){
double X = len * sin(x*i);
double Y = len * cos(x*i);
if(i%2==0){
P.push_back(make_pair(X,Y));
AAA = POINT(X,Y);
}else{
Q.push_back(make_pair(X,Y));
BBB = POINT(X,Y);
}
if(i>=1&&i<=n){
POINT A,B;
A.x = (AAA.x+BBB.x)/2.0;
A.y = (AAA.y+BBB.y)/2.0;
B.x = 0;
B.y = 0;
AA.push_back(makeline(A,B));
}
}
for(int i=0;i<n;i++)
printf("%.12f %.12f\n",P[i].first,P[i].second);
for(int i=0;i<n;i++)
printf("%.12f %.12f\n",Q[i].first,Q[i].second);
for(int i=0;i<n;i++){
printf("%.12f %.12f %.12f ",AA[i].a,AA[i].b,AA[i].c);
int a1 = i/2,b1 = (i+1)/2;
for(int j=0;j<n;j++){
mp[(a1-j+n)%n] = (b1+j)%n;
}
for(int j=0;j<n;j++)
printf("%d ",mp[j]+1);
printf("\n");
}
}

Western Subregional of NEERC, Minsk, Wednesday, November 4, 2015 Problem H. Parallel Worlds 计算几何的更多相关文章

  1. Western Subregional of NEERC, Minsk, Wednesday, November 4, 2015 Problem K. UTF-8 Decoder 模拟题

    Problem K. UTF-8 Decoder 题目连接: http://opentrains.snarknews.info/~ejudge/team.cgi?SID=c75360ed7f2c702 ...

  2. Western Subregional of NEERC, Minsk, Wednesday, November 4, 2015 Problem I. Alien Rectangles 数学

    Problem I. Alien Rectangles 题目连接: http://opentrains.snarknews.info/~ejudge/team.cgi?SID=c75360ed7f2c ...

  3. Western Subregional of NEERC, Minsk, Wednesday, November 4, 2015 Problem F. Turning Grille 暴力

    Problem F. Turning Grille 题目连接: http://opentrains.snarknews.info/~ejudge/team.cgi?SID=c75360ed7f2c70 ...

  4. Western Subregional of NEERC, Minsk, Wednesday, November 4, 2015 Problem C. Cargo Transportation 暴力

    Problem C. Cargo Transportation 题目连接: http://opentrains.snarknews.info/~ejudge/team.cgi?SID=c75360ed ...

  5. Western Subregional of NEERC, Minsk, Wednesday, November 4, 2015 Problem G. k-palindrome dp

    Problem G. k-palindrome 题目连接: http://opentrains.snarknews.info/~ejudge/team.cgi?SID=c75360ed7f2c7022 ...

  6. Western Subregional of NEERC, Minsk, Wednesday, November 4, 2015 Problem A. A + B

    Problem A. A + B 题目连接: http://opentrains.snarknews.info/~ejudge/team.cgi?SID=c75360ed7f2c7022&al ...

  7. 2010 NEERC Western subregional

    2010 NEERC Western subregional Problem A. Area and Circumference 题目描述:给定平面上的\(n\)个矩形,求出面积与周长比的最大值. s ...

  8. 2009-2010 ACM-ICPC, NEERC, Western Subregional Contest

    2009-2010 ACM-ICPC, NEERC, Western Subregional Contest 排名 A B C D E F G H I J K L X 1 0 1 1 1 0 1 X ...

  9. 【GYM101409】2010-2011 ACM-ICPC, NEERC, Western Subregional Contest

    A-Area and Circumference 题目大意:在平面上给出$N$个三角形,问周长和面积比的最大值. #include <iostream> #include <algo ...

随机推荐

  1. bzoj千题计划292:bzoj2244: [SDOI2011]拦截导弹

    http://www.lydsy.com/JudgeOnline/problem.php?id=2244 每枚导弹成功拦截的概率 = 包含它的最长上升子序列个数/最长上升子序列总个数 pre_len ...

  2. html5 canvas路径绘制2

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  3. JavaScript1.6数组新特性和JQuery的几个工具方法

    JavaScript 1.6 引入了几个新的Array 方法,具体的介绍见:New in JavaScript 1.6 .这些方法已经被写进了ECMA262 V5.现代浏览器(IE9/Firefox/ ...

  4. iOS动画1 — UIView动画

    iOS动画基础是Core Animation核心动画.Core Animation是iOS平台上负责图形渲染与动画的基础设施.由于核心动画的实现比较复杂,苹果提供了实现简单动画的接口—UIView动画 ...

  5. py-faster-rcnn代码阅读2-config.py

    简介  该文件指定了用于fast rcnn训练的默认config选项,不能随意更改,如需更改,应当用yaml再写一个config_file,然后使用cfg_from_file(filename)导入以 ...

  6. Hibernate二级缓存(未完待续)

    1.Hibernate的cache介绍: Hibernate实现了良好的Cache机制,可以借助Hibernate内部的Cache迅速提高系统的数据读取性能.Hibernate中的Cache可分为两层 ...

  7. OpenLayers 3 之 地图图层数据来源(ol.source)详解

    原文地址 source 是 Layer 的重要组成部分,表示图层的来源,也就是服务地址.除了在构造函数中制定外,可以使用 layer.setSource(source) 稍后指定.一.包含的类型 ol ...

  8. 二十三、springboot之session共享

    通过redis实现session共享 SpringBoot集成springsession 1.引入依赖(gradle方式) dependencies { compile('org.springfram ...

  9. 更改jupyter notebook的主题颜色(theme) 包括pycharm

    https://blog.csdn.net/Techmonster/article/details/73382535

  10. spring boot JPA中实体类常用注解

    spring boot jpa中的注解很多,参数也比较多.没必要全部记住,但是经常查看官方文档也比较麻烦,记录一下一些常用的注解.通过一些具体的例子来帮助记忆. @Entity @Table(name ...