【刷题】BZOJ 3944 Sum
Description
Input
一共T+1行
第1行为数据组数T(T<=10)
第2~T+1行每行一个非负整数N,代表一组询问
Output
一共T行,每行两个用空格分隔的数ans1,ans2
Sample Input
6
1
2
8
13
30
2333
Sample Output
1 1
2 0
22 -2
58 -3
278 -3
1655470 2
Solution
杜教筛裸题啊
对于 \(\mu\) ,利用与它有关的卷积 \(\mu*1=e\) ,杜教筛式子为 \(S(n)=1-\sum_{i=2}^nS(\lfloor\frac{n}{i}\rfloor)\)
对于 \(\varphi\) ,利用与它有关的卷积 \(\varphi*1=id\) ,杜教筛式子为 \(S(n)=\sum_{i=1}^ni-\sum_{i=2}^nS(\lfloor\frac{n}{i}\rfloor)\)
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=3000000+10;
int t,n,vis[MAXN],prime[MAXN],cnt,phi[MAXN],mu[MAXN],smu[MAXN];
ll sphi[MAXN];
std::map<int,int> M;
std::map<int,ll> P;
namespace IO
{
const ui Buffsize=1<<15,Output=1<<23;
static char Ch[Buffsize],*S=Ch,*T=Ch;
inline char getc()
{
return((S==T)&&(T=(S=Ch)+fread(Ch,1,Buffsize,stdin),S==T)?0:*S++);
}
static char Out[Output],*nowps=Out;
inline void flush(){fwrite(Out,1,nowps-Out,stdout);nowps=Out;}
template<typename T>inline void read(T&x)
{
x=0;static char ch;T f=1;
for(ch=getc();!isdigit(ch);ch=getc())if(ch=='-')f=-1;
for(;isdigit(ch);ch=getc())x=x*10+(ch^48);
x*=f;
}
template<typename T>inline void write(T x,char ch='\n')
{
if(!x)*nowps++='0';
if(x<0)*nowps++='-',x=-x;
static ui sta[111],tp;
for(tp=0;x;x/=10)sta[++tp]=x%10;
for(;tp;*nowps++=sta[tp--]^48);
*nowps++=ch;
}
}
using namespace IO;
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void init()
{
memset(vis,1,sizeof(vis));
vis[0]=vis[1]=0;
phi[1]=mu[1]=1;
for(register int i=2;i<MAXN;++i)
{
if(vis[i])
{
prime[++cnt]=i;
mu[i]=-1;phi[i]=i-1;
}
for(register int j=1;j<=cnt&&i*prime[j]<MAXN;++j)
{
vis[i*prime[j]]=0;
if(i%prime[j])
{
mu[i*prime[j]]=mu[i]*mu[prime[j]];
phi[i*prime[j]]=phi[i]*phi[prime[j]];
}
else
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
}
}
for(register int i=1;i<MAXN;++i)smu[i]=smu[i-1]+mu[i],sphi[i]=sphi[i-1]+phi[i];
}
inline int Smu(ll x)
{
if(x<MAXN)return smu[x];
if(M.find(x)!=M.end())return M[x];
int res=0;
for(register ll i=2;;)
{
if(i>x)break;
ll j=x/(x/i);
res+=(j-i+1)*Smu(x/i);
i=j+1;
}
return M[x]=1-res;
}
inline ll Sphi(ll x)
{
if(x<MAXN)return sphi[x];
if(P.find(x)!=P.end())return P[x];
ll res=0;
for(register ll i=2;;)
{
if(i>x)break;
ll j=x/(x/i);
res+=1ll*(j-i+1)*Sphi(x/i);
i=j+1;
}
return P[x]=1ll*(x+1)*x/2-res;
}
int main()
{
init();read(t);
while(t--)read(n),write(Sphi(n),' '),write(Smu(n),'\n');
flush();
return 0;
}
【刷题】BZOJ 3944 Sum的更多相关文章
- ●杜教筛入门(BZOJ 3944 Sum)
入门杜教筛啦. http://blog.csdn.net/skywalkert/article/details/50500009(好文!) 可以在$O(N^{\frac{2}{3}})或O(N^{\f ...
- BZOJ 3944: Sum [杜教筛]
3944: Sum 贴模板 总结见学习笔记(现在还没写23333) #include <iostream> #include <cstdio> #include <cst ...
- bzoj 3944: Sum(杜教筛)
3944: Sum Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4930 Solved: 1313[Submit][Status][Discuss ...
- BZOJ 3944 Sum
题目链接:Sum 嗯--不要在意--我发这篇博客只是为了保存一下杜教筛的板子的-- 你说你不会杜教筛?有一篇博客写的很好,看完应该就会了-- 这道题就是杜教筛板子题,也没什么好讲的-- 下面贴代码(不 ...
- BZOJ.3944.Sum(Min_25筛)
BZOJ 洛谷 不得不再次吐槽洛谷数据好水(连\(n=0,2^{31}-1\)都没有). \(Description\) 给定\(n\),分别求\[\sum_{i=1}^n\varphi(i),\qu ...
- bzoj 3944 Sum —— 杜教筛
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3944 杜教筛入门题! 看博客:https://www.cnblogs.com/zjp-sha ...
- LeetCode刷题 1. Two Sum 两数之和 详解 C++语言实现 java语言实现
1. Two Sum 两数之和 Given an array of integers, return indices of the two numbers such that they add up ...
- 【leetcode刷题笔记】Sum Root to Leaf Numbers
Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...
- bzoj 3944: Sum【莫比乌斯函数+欧拉函数+杜教筛】
一道杜教筛的板子题. 两个都是积性函数,所以做法是一样的.以mu为例,设\( f(n)=\sum_{d|n}\mu(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1} ...
随机推荐
- 3D Touch开发技巧的笔记
iPhone6s以及iPhone6s plus搭载iOS9,有一个新功能叫做3D Touch,这个功能有很大的用处,关键是要会用,这给交互方式又多了一个新的选择和思考,比如说游戏中的额外控制选项.绘图 ...
- 在ListBoxItem的样式中的button传参,把当前选中项传递到命令的方法
原文:在ListBoxItem的样式中的button传参,把当前选中项传递到命令的方法 前端页面: <Style x:Key="ThumbItemStyle" TargetT ...
- EZ 2017 01 07 t
这名字诡异(然而就是这样) 这次主要是yekehe和yu‘ao都来了,所以很开心的讨论(上了200). 但是,yu’ao dalao又AK了!(666666) 不过总体难度也不高,主要是T3没思路. ...
- noi.ac 257 B
链接 题目 区间[l,r]是连续满足,[l,r]中的数字的权值区间是一段连续的.多次询问可以完包含一个区间的连续区间.区间长度尽量小,如果有多个输出左端点靠左的. 分析: [l,r]区间是连续的,当且 ...
- idea 设置格式化代码 快捷键
- 重置Oracle配置
经常被ORACLE坑,作为一个只需要开发时候连连ORACLE的程序员,在经历了一次又一次的折腾之后,决定还是把这些琐碎的事情写下来. 经常在虚拟机中使用ORACLE,ORACLE的网络配置有一些变化就 ...
- spring cloud资料汇总
https://www.cnblogs.com/Java3y/p/9540386.html#commentform --非常好的文章,里面还有海量学习资料
- (幼儿园毕业)Javascript小学级随机生成四则运算
软件工程第二次结对作业四则运算自动生成器网页版 一.题目要求 本次作业要求两个人合作完成,驾驶员和导航员角色自定,鼓励大家在工作期间角色随时互换,这里会布置两个题目,请各组成员根据自己的爱好任选一题. ...
- Asp.Net_序列化、反序列化
.net序列化及反序列化 在我们深入探讨C#序列化和反序列化之前我们先要明白什么是序列化,它又称串行化,是.NET运行时环境用来支持用户定义类型的流化的机制.序列化就是把一个对象保存到一个文件或数据库 ...
- ASP.NET Core采用Web Deploy方式发布到 Windows Server 2012 IIS上
小白一枚,租个服务器,发布下网站,满足下好奇心,讲的粗糙,请大家谅解哈~ 1.配置服务器环境.这部分网上教程比较多. (1)开启IIS,参考其他博客的,担心的话,将Web服务器(IIS)全选哈~ (2 ...