python之旅:元类
type()
动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的。
比方说我们要定义一个Hello的class,就写一个hello.py模块:
class Hello(object):
def hello(self,name='world'):
print('Hello,%s.' %name)
当Python解释器载入hello模块时,就会一次执行该模块的所有语句,,执行结果就是动态创建出一个Hello的class对象,测试如下:
h = Hello()
h.hello()
print(type(Hello))
print(type(h)) Hello,world
<class 'type'>
<class '__main__.Hello'>
type()函数可以查看一个类型或变量的类型,Hello是一个class,它的类型就是type,而h是一个实例,它的类型就是class Hello。
我们说class的定义是运行时动态创建的,而创建class的方法就是使用type()函数。
type()函数既可以返回一个对象的类型,又可以创建出新的类型,比如,我们可以通过type()函数创建出Hello类,而无须通过class Hello(object)...的定义:
>>> def fn(self, name='world'): # 先定义函数
... print('Hello, %s.' % name)
...
>>> Hello = type('Hello', (object,), dict(hello=fn)) # 创建Hello class
>>> h = Hello()
>>> h.hello()
Hello, world.
>>> print(type(Hello))
<class 'type'>
>>> print(type(h))
<class '__main__.Hello'>
要创建一个class对象,type()函数依次传入3个参数:
- class的名称;
- 继承的父类集合,注意Python支持多重继承,如果只有一个父类,别忘了tuple的单元素写法;
- class的方法名称与函数绑定,这里我们把函数
fn绑定到方法名hello上。
通过type()函数创建的类和直接写class是完全一样的,因为Python解释器遇到class定义时,仅仅是扫描一下class定义的语法,然后调用type()函数创建出class。
正常情况下,我们都用class Xxx...来定义类,但是,type()函数也允许我们动态创建出类来,也就是说,动态语言本身支持运行期动态创建类,这和静态语言有非常大的不同,要在静态语言运行期创建类,必须构造源代码字符串再调用编译器,或者借助一些工具生成字节码实现,本质上都是动态编译,会非常复杂。
metaclass
除了使用type()动态创建类以外,要控制类的创建行为,还可以使用metaclass。
metaclass,直译为元类,简单的解释就是:
当我们定义了类以后,就可以根据这个类创建出实例,所以:先定义类,然后创建实例。
但是如果我们想创建出类呢?那就必须根据metaclass创建出类,所以:先定义metaclass,然后创建类。
连接起来就是:先定义metaclass,就可以创建类,最后创建实例。
所以,metaclass允许你创建类或者修改类。换句话说,你可以把类看成是metaclass创建出来的“实例”。
metaclass是Python面向对象里最难理解,也是最难使用的魔术代码。正常情况下,你不会碰到需要使用metaclass的情况,所以,以下内容看不懂也没关系,因为基本上你不会用到。
我们先看一个简单的例子,这个metaclass可以给我们自定义的MyList增加一个add方法:
定义ListMetaclass,按照默认习惯,metaclass的类名总是以Metaclass结尾,以便清楚地表示这是一个metaclass:
# metaclass是类的模板,所以必须从`type`类型派生:
class ListMetaclass(type):
def __new__(cls, name, bases, attrs):
attrs['add'] = lambda self, value: self.append(value)
return type.__new__(cls, name, bases, attrs)
有了ListMetaclass,我们在定义类的时候还要指示使用ListMetaclass来定制类,传入关键字参数metaclass:
class MyList(list, metaclass=ListMetaclass):
pass
当我们传入关键字参数metaclass时,魔术就生效了,它指示Python解释器在创建MyList时,要通过ListMetaclass.__new__()来创建,在此,我们可以修改类的定义,比如,加上新的方法,然后,返回修改后的定义。
__new__()方法接收到的参数依次是:
当前准备创建的类的对象;
类的名字;
类继承的父类集合;
类的方法集合。
测试一下MyList是否可以调用add()方法:
>>> L = MyList()
>>> L.add(1)
>> L
[1]
而普通的list没有add()方法:
>>> L2 = list()
>>> L2.add(1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'list' object has no attribute 'add'
动态修改有什么意义?直接在MyList定义中写上add()方法不是更简单吗?正常情况下,确实应该直接写,通过metaclass修改纯属变态。
但是,总会遇到需要通过metaclass修改类定义的。ORM就是一个典型的例子。
ORM全称“Object Relational Mapping”,即对象-关系映射,就是把关系数据库的一行映射为一个对象,也就是一个类对应一个表,这样,写代码更简单,不用直接操作SQL语句。
要编写一个ORM框架,所有的类都只能动态定义,因为只有使用者才能根据表的结构定义出对应的类来。
让我们来尝试编写一个ORM框架。
编写底层模块的第一步,就是先把调用接口写出来。比如,使用者如果使用这个ORM框架,想定义一个User类来操作对应的数据库表User,我们期待他写出这样的代码:
class User(Model):
# 定义类的属性到列的映射:
id = IntegerField('id')
name = StringField('username')
email = StringField('email')
password = StringField('password') # 创建一个实例:
u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')
# 保存到数据库:
u.save()
其中,父类Model和属性类型StringField、IntegerField是由ORM框架提供的,剩下的魔术方法比如save()全部由metaclass自动完成。虽然metaclass的编写会比较复杂,但ORM的使用者用起来却异常简单。
现在,我们就按上面的接口来实现该ORM。
首先来定义Field类,它负责保存数据库表的字段名和字段类型:
class Field(object):
def __init__(self, name, column_type):
self.name = name
self.column_type = column_type
def __str__(self):
return '<%s:%s>' % (self.__class__.__name__, self.name)
在Field的基础上,进一步定义各种类型的Field,比如StringField,IntegerField等等:
class StringField(Field):
def __init__(self, name):
super(StringField, self).__init__(name, 'varchar(100)')
class IntegerField(Field):
def __init__(self, name):
super(IntegerField, self).__init__(name, 'bigint')
下一步,就是编写最复杂的ModelMetaclass了:
class ModelMetaclass(type):
def __new__(cls, name, bases, attrs):
if name=='Model':
return type.__new__(cls, name, bases, attrs)
print('Found model: %s' % name)
mappings = dict()
for k, v in attrs.items():
if isinstance(v, Field):
print('Found mapping: %s ==> %s' % (k, v))
mappings[k] = v
for k in mappings.keys():
attrs.pop(k)
attrs['__mappings__'] = mappings # 保存属性和列的映射关系
attrs['__table__'] = name # 假设表名和类名一致
return type.__new__(cls, name, bases, attrs)
以及基类Model:
class Model(dict, metaclass=ModelMetaclass):
def __init__(self, **kw):
super(Model, self).__init__(**kw)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Model' object has no attribute '%s'" % key)
def __setattr__(self, key, value):
self[key] = value
def save(self):
fields = []
params = []
args = []
for k, v in self.__mappings__.items():
fields.append(v.name)
params.append('?')
args.append(getattr(self, k, None))
sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(params))
print('SQL: %s' % sql)
print('ARGS: %s' % str(args))
当用户定义一个class User(Model)时,Python解释器首先在当前类User的定义中查找metaclass,如果没有找到,就继续在父类Model中查找metaclass,找到了,就使用Model中定义的metaclass的ModelMetaclass来创建User类,也就是说,metaclass可以隐式地继承到子类,但子类自己却感觉不到。
在ModelMetaclass中,一共做了几件事情:
排除掉对
Model类的修改;在当前类(比如
User)中查找定义的类的所有属性,如果找到一个Field属性,就把它保存到一个__mappings__的dict中,同时从类属性中删除该Field属性,否则,容易造成运行时错误(实例的属性会遮盖类的同名属性);把表名保存到
__table__中,这里简化为表名默认为类名。
在Model类中,就可以定义各种操作数据库的方法,比如save(),delete(),find(),update等等。
我们实现了save()方法,把一个实例保存到数据库中。因为有表名,属性到字段的映射和属性值的集合,就可以构造出INSERT语句。
编写代码试试:
u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')
u.save()
输出如下:
Found model: User
Found mapping: email ==> <StringField:email>
Found mapping: password ==> <StringField:password>
Found mapping: id ==> <IntegerField:uid>
Found mapping: name ==> <StringField:username>
SQL: insert into User (password,email,username,id) values (?,?,?,?)
ARGS: ['my-pwd', 'test@orm.org', 'Michael', 12345]
可以看到,save()方法已经打印出了可执行的SQL语句,以及参数列表,只需要真正连接到数据库,执行该SQL语句,就可以完成真正的功能。
不到100行代码,我们就通过metaclass实现了一个精简的ORM框架,是不是非常简单?
小结
metaclass是Python中非常具有魔术性的对象,它可以改变类创建时的行为。这种强大的功能使用起来务必小心。
python之旅:元类的更多相关文章
- python基础——使用元类
python基础——使用元类 type() 动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的. 比方说我们要定义一个Hello的class,就写一个hello. ...
- Python基础:元类
一.概述 二.经典阐述 三.核心总结 1.类的创建过程 2.元类的使用惯例 四.简单案例 1.默认行为 2.使用元类 五.实践为王 一.概述 Python虽然是多范式的编程语言,但它的数据模型却是 纯 ...
- Python中的元类(metaclass)
推荐+收藏:深刻理解Python中的元类(metaclass) 做一些笔记学习学习: 在大多数编程语言中,类就是用来描述如何生成一个对象的代码段,在Python中类也是一个对象,这个(类)对象自身拥有 ...
- [转]深刻理解Python中的元类(metaclass)以及元类实现单例模式
使用元类 深刻理解Python中的元类(metaclass)以及元类实现单例模式 在看一些框架源代码的过程中碰到很多元类的实例,看起来很吃力很晦涩:在看python cookbook中关于元类创建单例 ...
- 什么是python中的元类
所属网站分类: python高级 > 面向对象 作者:goodbody 原文链接: http://www.pythonheidong.com/blog/article/11/ 来源:python ...
- Python之面向对象元类
Python之面向对象元类 call方法: class People: def __init__(self,name): self.name=name # def __call__(self, *ar ...
- [Python之路] 元类(引申 单例模式)
一.类也是对象 当我们定义一个变量或者函数的时候,我们可以在globals()的返回值字典中找到响应的映射: def A(): print("This is function A" ...
- Python 中的元类到底是什么?这篇恐怕是最清楚的了
类作为对象 在理解元类之前,您需要掌握 Python 的类.Python 从 Smalltalk 语言中借用了一个非常特殊的类概念. 在大多数语言中,类只是描述如何产生对象的代码段.在 Python ...
- Python面向对象06 /元类type、反射、函数与类的区别、特殊的双下方法
Python面向对象06 /元类type.反射.函数与类的区别.特殊的双下方法 目录 Python面向对象06 /元类type.反射.函数与类的区别.特殊的双下方法 1. 元类type 2. 反射 3 ...
- Python中的元类和__metaclass__
1.什么是元类 元类让你来定义某些类是如何被创建的,从根本上说,赋予你如何创建类的控制权.可以把元类想成是一个类中类,或是一个类,它的实例是其它的类.当某个类调用type()函数时,你就会看到它到底是 ...
随机推荐
- GAN初步——本质上就是在做优化,对于生成器传给辨别器的生成图片,生成器希望辨别器打上标签 1,体现在loss上!
from:https://www.sohu.com/a/159976204_717210 GAN 从 2014 年诞生以来发展的是相当火热,比较著名的 GAN 的应用有 Pix2Pix.CycleGA ...
- jinkens 构建java及vue 项目
- 用信鸽来讲解HTTPS的知识
加密是一个很难理解的东西,这里头满是数学证明.不过,除非你是在开发一个加密系统,否则无需了解那些高阶的复杂知识. 如果你看这篇文章是为了创造下一个 HTTPS 协议,很抱歉,请出门左走,鸽子是远远不够 ...
- 2. Python3 基础入门
Python3 基础入门 编码 在python3中,默认情况下以UTF-8编码.所有字符串都是 unicode 字符串,当然也可以指定不同编码.体验过2.x版本的编码问题,才知道什么叫难受. # -* ...
- 甲题题解-1116. Come on! Let’s C (20)-(素数筛选法)
用vis标记出现过的id,checked标记询问过的id.至于如何判断排名为素数,用素数筛选法预处理一下即可,水题. #include <iostream> #include <cs ...
- Notes of Daily Scrum Meeting(12.8)
今日团队任务总结: 团队成员 今日团队工作 陈少杰 使用例子对json数据进行解析 王迪 确定搜索功能的接口 金鑫 对布局文件进行协助修改 雷元勇 开始进行搜索功能的代码实现 高孟烨 按照学长的样本对 ...
- Linux内核分析第五章读书笔记
第五章 系统调用 在操作系统中,内核提供了用户进程与内核进行交互的一组接口,这些接口在应用程序和内核之间扮演了使者的角色,保证系统稳定可靠,避免应用程序肆意妄行. 5.1 与内核通信 系统调用在用户空 ...
- Java单元测试框架 JUnit
Java单元测试框架 JUnit JUnit是一个Java语言的单元测试框架.它由Kent Beck和Erich Gamma建立,逐渐成为源于KentBeck的sUnit的xUnit家族中为最成功的一 ...
- BAE静态文件问题
这几天想在bae上架一个自己的博客,但是老是访问不到静态文件文件,都要没有办法了,最后看了这篇博客,受到了启发,知道了问题所在: 我自己的原始的app.conf的配置如下: handlers: - u ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (三)配置远程桌面连接访问dock ...