题面

题解

考虑整体二分。

定义整体二分函数solve(l, r, ql, qr)表示操作权值在\([l, r]\)中,对\([ql, qr]\)的询问进行二分。

这样的话check就会很简单,先按照时间将所有\(\geq mid\)的边加进去,对于每个点判断是不是所有路径都经过了这个点就可以判断这个点的答案是不是\(\geq mid\)

具体如何判断的话可以用树上差分。

代码

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define clear(x, y) memset(x, y, sizeof(x)) inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
} const int maxn(100010), maxm(200010);
struct edge { int next, to; } e[maxn << 1];
int head[maxn], e_num, n, m;
inline void add_edge(int from, int to)
{
e[++e_num] = (edge) {head[from], to};
head[from] = e_num;
} int size[maxn], heavy[maxn], pos[maxn], fa[maxn], belong[maxn], cnt;
void dfs(int x)
{
size[x] = 1;
for(RG int i = head[x]; i; i = e[i].next)
{
int to = e[i].to; if(to == fa[x]) continue;
fa[to] = x; dfs(to); size[x] += size[to];
if(size[heavy[x]] < size[to]) heavy[x] = to;
}
} void dfs(int x, int chain)
{
pos[x] = ++cnt; belong[x] = chain;
if(!heavy[x]) return;
dfs(heavy[x], chain);
for(RG int i = head[x]; i; i = e[i].next)
{
int to = e[i].to;
if(to == fa[x] || to == heavy[x]) continue;
dfs(to, to);
}
} struct qry { int opt, from, to, dis, id, lca, y; } s[maxm], pl[maxm], pr[maxm];
int U[maxm], ucnt, ans[maxm], c[maxm]; void update(int x, int v) { while(x <= n) c[x] += v, x += x & -x; }
int query(int x) { int a = 0; while(x) a += c[x], x -= x & -x; return a; }
void Div(int l, int r, int ql, int qr)
{
if(ql > qr) return;
bool flag = 1; int cntl = 0, cntr = 0;
for(RG int i = ql; i <= qr; i++)
if(s[i].opt == 2) { flag = 0; break; }
if(flag) return;
if(l == r)
{
for(RG int i = ql; i <= qr; i++)
if(s[i].id) ans[s[i].id] = l;
return;
}
int mid = (l + r) >> 1, sum = 0;
for(RG int i = ql; i <= qr; i++)
if(s[i].opt == 2)
{
if(query(pos[s[i].from] + size[s[i].from] - 1) -
query(pos[s[i].from] - 1) == sum) pr[++cntr] = s[i];
else pl[++cntl] = s[i];
}
else if(s[i].dis <= mid)
{
int d = s[i].opt ? -1 : 1; sum += d;
update(pos[s[i].from], d); update(pos[s[i].to], d);
update(pos[s[i].lca], -d);
if(s[i].lca != 1) update(pos[fa[s[i].lca]], -d);
pl[++cntl] = s[i];
}
else pr[++cntr] = s[i];
memcpy(s + ql, pl + 1, sizeof(qry) * cntl);
memcpy(s + ql + cntl, pr + 1, sizeof(qry) * cntr);
for(RG int i = ql; i <= qr; i++)
if(s[i].opt != 2 && s[i].dis <= mid && s[i].y)
{
int d = s[i].opt ? 1 : -1;
update(pos[s[i].from], d); update(pos[s[i].to], d);
update(pos[s[i].lca], -d);
if(s[i].lca != 1) update(pos[fa[s[i].lca]], -d);
}
Div(l, mid, ql, ql + cntl - 1), Div(mid + 1, r, ql + cntl, qr);
} int main()
{
n = read(), m = read();
for(RG int i = 1, a, b; i < n; i++)
a = read(), b = read(),
add_edge(a, b), add_edge(b, a);
dfs(1); dfs(1, 1);
for(RG int i = 1; i <= m; i++)
{
s[i].opt = read();
if(s[i].opt == 0)
{
int x = s[i].from = read(), y = s[i].to = read();
U[++ucnt] = -(s[i].dis = read()), s[i].y = 1;
while(belong[x] != belong[y])
{
if(pos[belong[x]] < pos[belong[y]]) std::swap(x, y);
x = fa[belong[x]];
}
s[i].lca = (pos[x] < pos[y] ? x : y);
}
else if(s[i].opt == 1)
{
int x = read(); s[i] = s[x]; s[i].opt = 1;
s[i].y = s[x].y = 0;
}
else s[i].from = read(), s[i].id = ++ans[0];
}
U[++ucnt] = 1; std::sort(U + 1, U + ucnt + 1);
ucnt = std::unique(U + 1, U + ucnt + 1) - U - 1;
for(RG int i = 1; i <= m; i++) if(s[i].opt != 2)
s[i].dis = std::lower_bound(U + 1, U + ucnt + 1, -s[i].dis) - U;
for(RG int i = 1; i <= ucnt; i++) U[i] = -U[i];
Div(1, ucnt, 1, m);
for(RG int i = 1; i <= ans[0]; i++) printf("%d\n", U[ans[i]]);
return 0;
}

【HNOI2016】网络的更多相关文章

  1. BZOJ 4538: [Hnoi2016]网络 [整体二分]

    4538: [Hnoi2016]网络 题意:一棵树,支持添加一条u到v权值为k的路径,删除之前的一条路径,询问不经过点x的路径的最大权值 考虑二分 整体二分最大权值,如果\(k \in [mid+1, ...

  2. 【LG3250】[HNOI2016]网络

    [LG3250][HNOI2016]网络 题面 洛谷 题解 30pts 对于\(m\leq 2000\),直接判断一下这个个点是否断掉一个交互,没断掉的里面取\(max\)即可,复杂度\(O(m^2\ ...

  3. 4538: [Hnoi2016]网络

    4538: [Hnoi2016]网络 链接 分析: 整体二分. 对于一次操作,可以二分一个答案mid,判断权值大于mid的路径是否全部经过这个点.如果是 ,那么这次询问的答案在[l,mid-1]之间, ...

  4. [HNOI2016]网络 树链剖分,堆

    [HNOI2016]网络 LG传送门 表示乱搞比正解难想. 整体二分很好想吧. 但是为了好写快乐,我们选择三个\(\log\)的乱搞. 先树剖,线段树套堆维护区间最大值.对于一次修改,如果是插入,就把 ...

  5. 【BZOJ4538】[Hnoi2016]网络 整体二分+树状数组

    [BZOJ4538][Hnoi2016]网络 Description 一个简单的网络系统可以被描述成一棵无根树.每个节点为一个服务器.连接服务器与服务器的数据线则看做一条树边.两个服务器进行数据的交互 ...

  6. Luogu-3250 [HNOI2016]网络

    Luogu-3250 [HNOI2016]网络 题面 Luogu-3250 题解 CDQ分治...这个应该算是整体二分吧 二分重要度,按照时间从小到大加入大于重要度的边 对于一个询问,如果经过这个点的 ...

  7. (BZOJ4538)HNOI2016 网络

    HNOI2016 Day1 T2 网络 Description 一个简单的网络系统可以被描述成一棵无根树.每个节点为一个服务器.连接服务器与服务器的数据线则看做一条树边.两个服务器进行数据的交互时,数 ...

  8. P3250 [HNOI2016]网络

    LINK:网络 一棵树 每次添加一条路径 或者删除之前的一条路径 或询问除了不经过某个点之外剩下的最大值. 一个显然的思路 对于一条路径的权值我们直接把权值塞上去 标记永久化一下即可. 考虑如何求答案 ...

  9. BZOJ4538 : [Hnoi2016]网络

    求出这棵树的dfs序,对于一条链$u-v$,假设$st[u]\leq st[v]$,那么一条链不经过点$x$当且仅当它满足下面任意一个条件: 1.$st[v]<st[x]$ 2.$st[u]&g ...

  10. HNOI2016 网络

    题目 朴素算法 在线. 树链剖分套一个堆. 时间复杂度\(O(n (\log n)^3)\). 分治 朴素算法中,套一个堆是为了支持删除操作. 采用以下分治可以避免删除操作: 每次对时间\([l,r] ...

随机推荐

  1. 5,注释、分支结构、循环结构、伪“选择结构”

    注释: python使用#作为行注释符,使用三引号作为多行注释符 分支结构: if-else: a=int(input("你的成绩是:")) if a>60: print(& ...

  2. Prometheus Node_exporter 之 Node Exporter

    Node Exporter 1. Node Exporter Scrape Time type: GraphUnit: secondsLabel: Seconds{{collector}} - 各个收 ...

  3. vscode对Vue文件的html部分格式化失效问题解决办法

    使用vscode编辑vue文件时发现突然格式化代码不会对<template> </template>之间的html生效了,解决办法很简单 文件 --> 首选项 ---&g ...

  4. 插入算法---java实现

    插入排序java代码实现 package algorithms.插入排序; import java.io.BufferedReader; import java.io.InputStreamReade ...

  5. Online, Cheap -- and Elite

    Online, Cheap -- and Elite Analysis of Georgia Tech’s MOOC-inspired online master's in computer scie ...

  6. 记录一次mysql使用load into命令导入csv格式数据的过程

    今天从qwiklab实验获取一组数据,大概有5万条,在qwiklab实验室使用的是pgsql数据库,但是今天想把他插入本地的mysql数据库中. 1.首先是查看一下数据内容: 数据中有的是空值,有的是 ...

  7. saltstack二次开发(二)

    Saltstack的api Salt-api有两种方式,一种是函数的形式,有人家定义好的函数,我们可以直接调用,直接写python代码调用函数或者类就可以了.第二种形式是salt-api有封装好的ht ...

  8. 在HTML中使用object和embed标签插入视频

    object标签和embed标签都能给页面添加多媒体内容: 一.object 对于object,w3c上定义object为一个嵌入的对象.可以使用此元素向您的 XHTML 页面添加多媒体.此元素允许您 ...

  9. (二十)ArcGIS JS 加载WMTS服务(超图示例)

    前言 在前一篇中说到我们可以通过加载WMS服务解决用ArcGIS API加载超图发布的服务,但是WMS服务在加载效率上是低于切片服务的,加上超图的IServer,无力吐槽,所以,在加载速度的要求下,切 ...

  10. BZOJ4892:[TJOI2017]dna(hash)

    Description 加里敦大学的生物研究所,发现了决定人喜不喜欢吃藕的基因序列S,有这个序列的碱基序列就会表现出喜欢吃藕的性状,但是研究人员发现对碱基序列S,任意修改其中不超过3个碱基,依然能够表 ...