【HNOI2016】网络
题面
题解
考虑整体二分。
定义整体二分函数solve(l, r, ql, qr)
表示操作权值在\([l, r]\)中,对\([ql, qr]\)的询问进行二分。
这样的话check就会很简单,先按照时间将所有\(\geq mid\)的边加进去,对于每个点判断是不是所有路径都经过了这个点就可以判断这个点的答案是不是\(\geq mid\)
具体如何判断的话可以用树上差分。
代码
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define clear(x, y) memset(x, y, sizeof(x))
inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int maxn(100010), maxm(200010);
struct edge { int next, to; } e[maxn << 1];
int head[maxn], e_num, n, m;
inline void add_edge(int from, int to)
{
e[++e_num] = (edge) {head[from], to};
head[from] = e_num;
}
int size[maxn], heavy[maxn], pos[maxn], fa[maxn], belong[maxn], cnt;
void dfs(int x)
{
size[x] = 1;
for(RG int i = head[x]; i; i = e[i].next)
{
int to = e[i].to; if(to == fa[x]) continue;
fa[to] = x; dfs(to); size[x] += size[to];
if(size[heavy[x]] < size[to]) heavy[x] = to;
}
}
void dfs(int x, int chain)
{
pos[x] = ++cnt; belong[x] = chain;
if(!heavy[x]) return;
dfs(heavy[x], chain);
for(RG int i = head[x]; i; i = e[i].next)
{
int to = e[i].to;
if(to == fa[x] || to == heavy[x]) continue;
dfs(to, to);
}
}
struct qry { int opt, from, to, dis, id, lca, y; } s[maxm], pl[maxm], pr[maxm];
int U[maxm], ucnt, ans[maxm], c[maxm];
void update(int x, int v) { while(x <= n) c[x] += v, x += x & -x; }
int query(int x) { int a = 0; while(x) a += c[x], x -= x & -x; return a; }
void Div(int l, int r, int ql, int qr)
{
if(ql > qr) return;
bool flag = 1; int cntl = 0, cntr = 0;
for(RG int i = ql; i <= qr; i++)
if(s[i].opt == 2) { flag = 0; break; }
if(flag) return;
if(l == r)
{
for(RG int i = ql; i <= qr; i++)
if(s[i].id) ans[s[i].id] = l;
return;
}
int mid = (l + r) >> 1, sum = 0;
for(RG int i = ql; i <= qr; i++)
if(s[i].opt == 2)
{
if(query(pos[s[i].from] + size[s[i].from] - 1) -
query(pos[s[i].from] - 1) == sum) pr[++cntr] = s[i];
else pl[++cntl] = s[i];
}
else if(s[i].dis <= mid)
{
int d = s[i].opt ? -1 : 1; sum += d;
update(pos[s[i].from], d); update(pos[s[i].to], d);
update(pos[s[i].lca], -d);
if(s[i].lca != 1) update(pos[fa[s[i].lca]], -d);
pl[++cntl] = s[i];
}
else pr[++cntr] = s[i];
memcpy(s + ql, pl + 1, sizeof(qry) * cntl);
memcpy(s + ql + cntl, pr + 1, sizeof(qry) * cntr);
for(RG int i = ql; i <= qr; i++)
if(s[i].opt != 2 && s[i].dis <= mid && s[i].y)
{
int d = s[i].opt ? 1 : -1;
update(pos[s[i].from], d); update(pos[s[i].to], d);
update(pos[s[i].lca], -d);
if(s[i].lca != 1) update(pos[fa[s[i].lca]], -d);
}
Div(l, mid, ql, ql + cntl - 1), Div(mid + 1, r, ql + cntl, qr);
}
int main()
{
n = read(), m = read();
for(RG int i = 1, a, b; i < n; i++)
a = read(), b = read(),
add_edge(a, b), add_edge(b, a);
dfs(1); dfs(1, 1);
for(RG int i = 1; i <= m; i++)
{
s[i].opt = read();
if(s[i].opt == 0)
{
int x = s[i].from = read(), y = s[i].to = read();
U[++ucnt] = -(s[i].dis = read()), s[i].y = 1;
while(belong[x] != belong[y])
{
if(pos[belong[x]] < pos[belong[y]]) std::swap(x, y);
x = fa[belong[x]];
}
s[i].lca = (pos[x] < pos[y] ? x : y);
}
else if(s[i].opt == 1)
{
int x = read(); s[i] = s[x]; s[i].opt = 1;
s[i].y = s[x].y = 0;
}
else s[i].from = read(), s[i].id = ++ans[0];
}
U[++ucnt] = 1; std::sort(U + 1, U + ucnt + 1);
ucnt = std::unique(U + 1, U + ucnt + 1) - U - 1;
for(RG int i = 1; i <= m; i++) if(s[i].opt != 2)
s[i].dis = std::lower_bound(U + 1, U + ucnt + 1, -s[i].dis) - U;
for(RG int i = 1; i <= ucnt; i++) U[i] = -U[i];
Div(1, ucnt, 1, m);
for(RG int i = 1; i <= ans[0]; i++) printf("%d\n", U[ans[i]]);
return 0;
}
【HNOI2016】网络的更多相关文章
- BZOJ 4538: [Hnoi2016]网络 [整体二分]
4538: [Hnoi2016]网络 题意:一棵树,支持添加一条u到v权值为k的路径,删除之前的一条路径,询问不经过点x的路径的最大权值 考虑二分 整体二分最大权值,如果\(k \in [mid+1, ...
- 【LG3250】[HNOI2016]网络
[LG3250][HNOI2016]网络 题面 洛谷 题解 30pts 对于\(m\leq 2000\),直接判断一下这个个点是否断掉一个交互,没断掉的里面取\(max\)即可,复杂度\(O(m^2\ ...
- 4538: [Hnoi2016]网络
4538: [Hnoi2016]网络 链接 分析: 整体二分. 对于一次操作,可以二分一个答案mid,判断权值大于mid的路径是否全部经过这个点.如果是 ,那么这次询问的答案在[l,mid-1]之间, ...
- [HNOI2016]网络 树链剖分,堆
[HNOI2016]网络 LG传送门 表示乱搞比正解难想. 整体二分很好想吧. 但是为了好写快乐,我们选择三个\(\log\)的乱搞. 先树剖,线段树套堆维护区间最大值.对于一次修改,如果是插入,就把 ...
- 【BZOJ4538】[Hnoi2016]网络 整体二分+树状数组
[BZOJ4538][Hnoi2016]网络 Description 一个简单的网络系统可以被描述成一棵无根树.每个节点为一个服务器.连接服务器与服务器的数据线则看做一条树边.两个服务器进行数据的交互 ...
- Luogu-3250 [HNOI2016]网络
Luogu-3250 [HNOI2016]网络 题面 Luogu-3250 题解 CDQ分治...这个应该算是整体二分吧 二分重要度,按照时间从小到大加入大于重要度的边 对于一个询问,如果经过这个点的 ...
- (BZOJ4538)HNOI2016 网络
HNOI2016 Day1 T2 网络 Description 一个简单的网络系统可以被描述成一棵无根树.每个节点为一个服务器.连接服务器与服务器的数据线则看做一条树边.两个服务器进行数据的交互时,数 ...
- P3250 [HNOI2016]网络
LINK:网络 一棵树 每次添加一条路径 或者删除之前的一条路径 或询问除了不经过某个点之外剩下的最大值. 一个显然的思路 对于一条路径的权值我们直接把权值塞上去 标记永久化一下即可. 考虑如何求答案 ...
- BZOJ4538 : [Hnoi2016]网络
求出这棵树的dfs序,对于一条链$u-v$,假设$st[u]\leq st[v]$,那么一条链不经过点$x$当且仅当它满足下面任意一个条件: 1.$st[v]<st[x]$ 2.$st[u]&g ...
- HNOI2016 网络
题目 朴素算法 在线. 树链剖分套一个堆. 时间复杂度\(O(n (\log n)^3)\). 分治 朴素算法中,套一个堆是为了支持删除操作. 采用以下分治可以避免删除操作: 每次对时间\([l,r] ...
随机推荐
- Djang之Model操作
Django之Model操作 一.字段 1.字段列表: AutoField(Field) - int自增列,必须填入参数 primary_key=True BigAutoField(AutoField ...
- .NET中低版本程序调用高版本DLL
在.NET项目开发中,有时需要对旧的程序进行二次开发,但是有些DLL是高版本的,如果对旧程序升级高版本,则需要改动的地方比较多,在项目比较急,开发时间短的情况下,可以通过下面方法让低版本程序调用高版本 ...
- 针对系统中磁盘IO负载过高的指导性操作
针对系统中磁盘IO负载过高的指导性操作 主要命令:echo deadline > /sys/block/sda/queue/scheduler 注:以下的内容仅是提供参考,如果磁盘IO确实比较大 ...
- 转:.NET 面试题汇总(一)
目录 本次给大家介绍的是我收集以及自己个人保存一些.NET面试题 简介 1.C# 值类型和引用类型的区别 2.如何使得一个类型可以在foreach 语句中使用 3.sealed修饰的类有什么特点 4. ...
- 【转】Java学习---Java Web基础面试题整理
[原文]https://www.toutiao.com/i6592359948632457731/ 1.什么是Servlet? 可以从两个方面去看Servlet: a.API:有一个接口servlet ...
- [POI2007]MEG-Megalopolis
传送门:嘟嘟嘟 第一反应是树链剖分,但是太长懒得写,然后就想出了一个很不错的做法. 想一下,如果我们改一条边,那么影响的只有他的子树,只要先搞一个dfs序,为什么搞出这个呢?因为有一个性质:一个节点的 ...
- 【Git123】Git
https://www.cnblogs.com/jager/p/6684637.html 四.git工作原理 这边文章介绍的不错 Git from the Bottom Up 六.git常用命令 wo ...
- Hibernate-validator校验框架使用
可以有两种使用方法: 第一种:在要检验的Dto对象之前加@Valid注解,这种方法必须配合BindingResult参数一起使用,否则验证不通过就会返回400,并且抛出"org.spring ...
- 常见的CSS属性和值CascadingStyleSheets
字体文本背景位置边框列表其他 CSS中修饰字体的属性 属 性 描 述 属 性 值 font-family 字体族科 任意字体族科名称都可以使用例如Times.serif等,而且多个族科 ...
- leetcode16—3 Sum Closet
Given an array nums of n integers and an integer target, find three integers in nums such that the s ...