Description
A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into the string in order to obtain a palindrome.

As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome.

Input

Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters from 'A' to 'Z', lowercase letters from 'a' to 'z' and digits from '0' to '9'. Uppercase and lowercase letters are to be considered distinct.

Output

Your program is to write to standard output. The first line contains one integer, which is the desired minimal number.

Sample Input

5
Ab3bd

Sample Output

2

这道题类似于编辑距离,使用动态规划可解:

用dp(i,j)表示数组从i到j的这个区间形成的子串,使其成为回文串需要加入最小的字符个数

那么动态规划方程为
1.min(dp(i+1,j)+1,dp(i,j-1)+1) (a[i]!=a[j])
dp(i,j)={
2.dp(i+1,j-1) (a[i]=a[j]) 这道题由于n最大可达5000,因此使用int型的二维数组会超空间,可以把int型改成short型,同时也可以使用滚动数组,因为这个状态转移方程是在两个相邻的
状态之间转变,因此使用两行一列的数组就完全可以存下,而且这个DP也类似于递推,由已知推未知,本就用不到那么多的空间,可以覆盖掉那些没用的,只保存有用的就行。
#include"iostream"
#include"cstring"
using namespace std;
const int maxn=5010;
char a[maxn];
int dp[2][maxn],n;
void Init()
{
for(int i=1;i<=n;i++) {cin>>a[i];}
memset(dp,0,sizeof(dp));
}
void Work()
{
for(int i=n-1;i>=1;i--)
{
for(int j=i+1;j<=n;j++)
{
if(a[i]==a[j])
dp[i%2][j]=dp[(i+1)%2][j-1];
else
dp[i%2][j]=min(dp[(i+1)%2][j],dp[i%2][j-1])+1;
}
}
}
void Print()
{
cout<<dp[1][n]<<endl;
}
int main()
{
while(cin>>n)
{
Init();
Work();
Print();
}
return 0;
}

 
#include"iostream"
#include"cstring"
using namespace std; const int maxn=;
char a[maxn];
short dp[maxn][maxn],n; void Init()
{ for(int i=;i<=n;i++) {cin>>a[i];}
memset(dp,0x3f,sizeof(dp));
} void Work()
{
for(int i=;i<=n;i++) {dp[i][i]=;dp[i+][i]=;}
for(int i=n-;i>=;i--)
{
for(int j=i+;j<=n;j++)
{
if(a[i]==a[j])
dp[i][j]=dp[i+][j-];
else
dp[i][j]=min(dp[i+][j],dp[i][j-])+;
}
}
} void Print()
{
cout<<dp[][n]<<endl;
} int main()
{
while(cin>>n)
{
Init();
Work();
Print();
}
return ;
}

 
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=+;
char a[maxn];
short dp[maxn][maxn];
int main()
{
int n;
while(cin>>n)
{
memset(dp,0x3f,sizeof(dp));
for(int i=;i<=n;i++) cin>>a[i];
for(int i=;i<=n;i++)
{
dp[i-][i]=;
dp[i][i]=;
}
for(int i=;i<=n;i++)
for(int j=i-;j>=;j--)
{
if(a[i]==a[j]) dp[i][j]=dp[i-][j+];
else dp[i][j]=min(dp[i-][j]+,dp[i][j+]+);
}
cout<<dp[n][]<<endl;
}
return ;
}


集训第五周动态规划 G题 回文串的更多相关文章

  1. 集训第五周动态规划 H题 回文串统计

    Hrdv is interested in a string,especially the palindrome string.So he wants some palindrome string.A ...

  2. 集训第五周动态规划 D题 LCS

    Description In a few months the European Currency Union will become a reality. However, to join the ...

  3. 集训第五周动态规划 C题 编辑距离

    Description Let x and y be two strings over some finite alphabet A. We would like to transform x int ...

  4. 集训第五周 动态规划 B题LIS

      Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Des ...

  5. 集训第五周动态规划 I题 记忆化搜索

    Description Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道 ...

  6. 集训第五周动态规划 F题 最大子矩阵和

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous s ...

  7. 集训第五周 动态规划 K题 背包

    K - 背包 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Statu ...

  8. 集训第五周动态规划 J题 括号匹配

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  9. 集训第五周动态规划 E题 LIS

    Description The world financial crisis is quite a subject. Some people are more relaxed while others ...

随机推荐

  1. _bzoj2002 [Hnoi2010]Bounce 弹飞绵羊【分块】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2002 见一周目记录:http://www.cnblogs.com/ciao-sora/p/6 ...

  2. bzoj2581 [USACO 2012 Jan Gold] Cow Run【And-Or Tree】

    传送门1:http://www.usaco.org/index.php?page=viewproblem2&cpid=110 传送门2:http://www.lydsy.com/JudgeOn ...

  3. 贪心/数学 Codeforces Round #212 (Div. 2) A. Two Semiknights Meet

    题目传送门 /* 贪心/数学:还以为是BFS,其实x1 + 4 * k = x2, y1 + 4 * l = y2 */ #include <cstdio> #include <al ...

  4. ASP.NET MVC 实现伪静态

    1  什么是伪静态? 现在很多门户网站或者各大电商平台的网站的链接最后都是.htm或者.htm结尾,那么他们的网页真的是静态的html吗?拿京东来说,有无数个页面都都Html,在商品每时每刻都可能被更 ...

  5. IOS 绘制PDF -转

    -(void)createPdf:(UIImage *)img andText:(NSString *)text{ NSArray *paths = NSSearchPathForDirectorie ...

  6. 转】在Ubuntu中安装Redis

    不多说,直接上干货! 原博文出自于: http://blog.fens.me/category/%E6%95%B0%E6%8D%AE%E5%BA%93/ 感谢! 在Ubuntu中安装Redis R利剑 ...

  7. Codeforces Round #138 (Div. 1)

    A 记得以前做过 当时好像没做对 就是找个子串 满足括号的匹配 []最多的 开两个栈模拟 标记下就行 #include <iostream> #include<cstring> ...

  8. 学JAVA第二十二天,StringBuffer的好处

    五一的假期今天就结束了,又要回来上课了. 今天就写一下StringBuffer的好处吧. StringBuffer类的对象能够被多次的修改,并且不产生新的未使用对象. 也就是说,我们平时用String ...

  9. Discrete Logging

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5865   Accepted: 2618 ...

  10. linux 安装 mongo 3.4

    要求:linux 安装 mongo 3.4 大体上,按照官网提供的方法来做. 系统是ubuntu 16.04 安装的是mongo3.4.8 社区版 1.         导入导入包管理系统使用的公钥 ...