【题解】

  先建反向图,用dijkstra跑出每个点到n的最短距离dis[i]

  设f[u][k]表示dis(u,n)<=mindis(u,n)+k的方案数。对于边e(u,v,w),走了这条边的话需要多走的距离就是这条边的边权-原来u,v之间的距离,即w-(dis[u]-dis[v])

  那么转移就是f[u][k]=sigma( f[v][k-w+(dis[u]-dis[v])] ),记忆化搜索非常好写。

  判无数解的话记录当前状态是否在栈中就可以了。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define rg register
#define N 200010
using namespace std;
int T,n,m,k,p,tot,last[N],dis[N],pos[N],f[N][];
bool in[N][];
struct edge{int to,pre,dis;}e[N];
struct heap{int p,d;}h[N];
struct rec{int u,v,w;}r[N];
inline int read(){
int k=,f=; char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(''<=c&&c<='')k=k*+c-'',c=getchar();
return k*f;
}
inline void MOD(int &k){if(k>=p) k-=p;}
inline void up(int x){
int fa;
while((fa=x>>)&&h[fa].d>h[x].d) swap(h[x],h[fa]),swap(pos[h[x].p],pos[h[fa].p]),x=fa;
}
inline void down(int x){
int son;
while((son=x<<)<=tot){
if(h[son+].d<h[son].d&&son<tot) son++;
if(h[son].d<h[x].d) swap(h[x],h[son]),swap(pos[h[x].p],pos[h[son].p]),x=son;
else return;
}
}
inline void dijkstra(int x){
for(rg int i=;i<=n;i++) dis[i]=1e9;
h[pos[x]=tot=]=(heap){x,dis[x]=};
while(tot){
int now=h[].p; pos[h[tot].p]=; h[]=h[tot--]; if(tot) down();
for(rg int i=last[now],to;i;i=e[i].pre)if(dis[to=e[i].to]>dis[now]+e[i].dis){
dis[to]=dis[now]+e[i].dis;
if(!pos[to]) h[pos[to]=++tot]=(heap){to,dis[to]};
else h[pos[to]].d=dis[to];
up(pos[to]);
}
}
}
int dfs(int x,int d){
if(in[x][d]) return -;
if(f[x][d]) return f[x][d];
in[x][d]=; f[x][d]=(x==n)?:;
for(rg int i=last[x],to,num;i;i=e[i].pre){
int tmp=-dis[x]+dis[to=e[i].to]+e[i].dis;
if(tmp<=d){
if((num=dfs(to,d-tmp))==-) return -;
MOD(f[x][d]+=num);
}
}
return in[x][d]=,f[x][d];
}
inline void Pre(){
memset(in,,sizeof(in));
memset(last,,sizeof(last));
memset(pos,,sizeof(pos));
memset(f,,sizeof(f));
tot=;
}
int main(){
T=read();
while(T--){
Pre();
n=read(); m=read(); k=read(); p=read();
for(rg int i=,u,v;i<=m;i++){
r[i].u=u=read(); r[i].v=v=read();
e[++tot]=(edge){u,last[v],r[i].w=read()}; last[v]=tot;
}
dijkstra(n);
memset(last,,sizeof(last)); tot=;
for(rg int i=;i<=m;i++){
int u=r[i].u,v=r[i].v;
e[++tot]=(edge){v,last[u],r[i].w}; last[u]=tot;
}
printf("%d\n",dfs(,k));
}
return ;
}

洛谷 3953 NOIP2017提高组Day1 T3 逛公园的更多相关文章

  1. 【前缀和】【前缀MAX】洛谷 P1351 NOIP2014提高组 day1 T2 联合权值

    不难发现,树中与某个点距离为2的点只可能是它的父亲的父亲.儿子的儿子 或者 兄弟,分类讨论一下即可. 只有对于兄弟我们不能暴力搞,维护一下每个节点的所有儿子的前缀和.前缀MAX就行了. #includ ...

  2. 【模拟】洛谷 P1328 NOIP2014提高组 day1 T1 生活大爆炸版石头剪刀布

    把所有情况打表,然后随便暴力. #include<cstdio> using namespace std; int n,an,bn,p1,p2; ],b[]; ][]; int ans1, ...

  3. Noip2011 提高组 Day1 T3 Mayan游戏

    题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游戏通关是指在规定 ...

  4. 洛谷P1312 [NOIP2011提高组Day1T3]Mayan游戏

    Mayan游戏 题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游 ...

  5. 洛谷P1003 [NOIP2011提高组Day1T1]铺地毯

    P1003 铺地毯 题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号 ...

  6. 洛谷P1080 [NOIP2012提高组D1T2]国王游戏 [2017年5月计划 清北学堂51精英班Day1]

    P1080 国王游戏 题目描述 恰逢 H 国国庆,国王邀请 n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右 手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 n 位大臣排 ...

  7. 洛谷 P2678 & [NOIP2015提高组] 跳石头

    题目链接 https://www.luogu.org/problemnew/show/P2678 题目背景 一年一度的“跳石头”比赛又要开始了! 题目描述 这项比赛将在一条笔直的河道中进行,河道中分布 ...

  8. 洛谷 P1025 & [NOIP2001提高组] 数的划分(搜索剪枝)

    题目链接 https://www.luogu.org/problemnew/show/P1025 解题思路 一道简单的dfs题,但是需要剪枝,否则会TLE. 我们用dfs(a,u,num)来表示上一个 ...

  9. 洛谷P1514 [NOIP2010提高组T4]引水入城

    P1514 引水入城 题目描述 在一个遥远的国度,一侧是风景秀美的湖泊,另一侧则是漫无边际的沙漠.该国的行政区划十分特殊,刚好构成一个N 行M 列的矩形,如上图所示,其中每个格子都代表一座城市,每座城 ...

随机推荐

  1. 部分安卓微信浏览器无法触发onchange事件

    这是安卓微信的一个遗留问题. 解决办法很简单: 将input标签 <input type=“file" name="image" accept="imag ...

  2. linux 查看进程和端口

    1.进程查看 #ps aux | grep java 2.查看系统与内核相关信息 #uname [-asrmpi] 查看系统位数 # uname -m 3.查看端口 #netstat [-aatunl ...

  3. Hdu 5361 In Touch (dijkatrs+优先队列)

    题目链接: Hdu 5361  In Touch 题目描述: 有n个传送机排成一排,编号从1到n,每个传送机都可以把自己位置的东西传送到距离自己[l, r]距离的位置,并且花费c,问从1号传送机到其他 ...

  4. 官方XmlPullParser和网络解析xml示例及详述

    Parsing XML Data This lesson teaches you to Choose a Parser Analyze the Feed Instantiate the Parser ...

  5. 转】用Nodejs连接MySQL

    原博文出自于: http://blog.fens.me/category/%E6%95%B0%E6%8D%AE%E5%BA%93/page/2/ 感谢! 用Nodejs连接MySQL 从零开始node ...

  6. html5表单新增元素与属性2

    1.标签的control属性 在html5中,可以在标签内部放置一个表单元素,并且通过该标签的control属性来访问该表单元素. <script> function setValue() ...

  7. 第三方知乎专栏应用Android源码

    这是一个国内开发者白瓦力贡献的一个简约的第三方知乎客户端,也许完整度不太高,但感觉还是相当不错的,其实我也是一个知乎迷,尽管平时围观的比较多. 我相信很多搞安卓开发的童鞋也去过知乎解惑吧.引用作者的描 ...

  8. 【Lucene】实现全文索引

    2. Lucene 实现全文检索的流程2.1.索引和搜索流程图 绿色表示索引过程,对要搜索的原始内容进行索引构建一个索引库,索引过程包括:确定原始内容即要搜索的内容 -> 采集文档 -> ...

  9. js 作用域 ?????

    ///*第一种情况 */ //var mycars = new Array() //mycars[0] = 0; //mycars[1] = 1; //mycars[2] = 2; //functio ...

  10. Seating Arrangement

    1997: Seating Arrangement Time Limit: 1 Sec     Memory Limit: 128 Mb     Submitted: 543     Solved:  ...