http://poj.org/problem?id=3177

题目大意:给你几个点和几条边   求你能加几条边  就可以让每一个点到达任意点都有两种方法。

Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample:

One visualization of the paths is:

   1   2   3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +

Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.

   1   2   3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -

Check some of the routes: 
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2 
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4 
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7 
Every pair of fields is, in fact, connected by two routes.

It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

 
 
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<vector> using namespace std;
#define N 20000 int low[N],dfn[N],n,fa[N],Stack[N],belong[N],Is[N],aa[N];
int Time,top,ans;
vector<vector <int> >G; void Inn()
{
G.clear();
G.resize(n+);
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(fa,,sizeof(fa));
memset(belong,,sizeof(belong));
memset(Stack,,sizeof(Stack));
memset(Is,,sizeof(Is));
memset(aa,,sizeof(aa));
Time=top=ans=;
} void Tarjin(int u,int f)
{
dfn[u]=low[u]=++Time;
Stack[top++]=u;
Is[u]=;
fa[u]=f;
int len=G[u].size(),v;
for(int i=; i<len; i++)
{
v=G[u][i];
if(!dfn[v])
{
Tarjin(v,u);
low[u]=min(low[u],low[v]);
}
else if(f!=v)
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
ans++;
do
{
v=Stack[--top];
belong[v]=ans;
Is[v]=;
}while(v!=u);
}
} int main()
{
int m,a,b,i,sum;
while(scanf("%d %d",&n,&m)!=EOF)
{
sum=;
Inn();
for(i=;i<=m;i++)
{
scanf("%d %d",&a,&b);
G[a].push_back(b);
G[b].push_back(a);
}
for(i=;i<=n;i++)
{
if(!dfn[i])
Tarjin(i,);
}
for(i=;i<=n;i++)
{
int v=fa[i];
if(belong[i]!=belong[v]&&v!=)
{
aa[belong[i]]++;
aa[belong[v]]++;
}
}
for(i=;i<=ans;i++)
{
if(aa[i]==)
sum++;
}
printf("%d\n",(sum+)/);
}
return ;
}

Redundant Paths-POJ3177(强连通缩点)的更多相关文章

  1. POJ3177 Redundant Paths —— 边双联通分量 + 缩点

    题目链接:http://poj.org/problem?id=3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total ...

  2. [POJ3177]Redundant Paths(双联通)

    在看了春晚小彩旗的E技能(旋转)后就一直在lol……额抽点时间撸一题吧…… Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Tota ...

  3. poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11047   Accepted: 4725 ...

  4. POJ3177 Redundant Paths 双连通分量

    Redundant Paths Description In order to get from one of the F (1 <= F <= 5,000) grazing fields ...

  5. POJ3177:Redundant Paths(并查集+桥)

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19316   Accepted: 8003 ...

  6. 缩点【洛谷P2860】 [USACO06JAN]冗余路径Redundant Paths

    P2860 [USACO06JAN]冗余路径Redundant Paths 为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了 ...

  7. POJ 3177 Redundant Paths(边双连通的构造)

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13717   Accepted: 5824 ...

  8. [双连通分量] POJ 3177 Redundant Paths

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13712   Accepted: 5821 ...

  9. tarjan算法求桥双连通分量 POJ 3177 Redundant Paths

    POJ 3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12598   Accept ...

  10. POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)

    POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...

随机推荐

  1. rabbitmq在storm中使用

    storm中只能进行任务计算,不能保存中间结果,最后结果. 这就有一个需求,保存计算结果,最好还是分布式的,因为storm也是分布式,大数据计算. 流行的分布式计算中使用队列保存数据居多. kafka ...

  2. Asp.Net 设计模式 之 “简单工厂”模式

    主要思想: public static Operation CreateFactory(string ope)        {            //实例化空父类,让父类指向子类         ...

  3. vb,wps,excel 提取括号的数字

    Sub 抽离数字() Dim hang Range("h1").Select Columns("E:F").Select Selection.Clear Ran ...

  4. 合并百度影音的离线数据 with python 第二版 基于yield

    重新整理了一下代码. 增加了bdv,mkv的处理流程. 目前暂时支持windows平台. bdv,mkv,rmvb的不同处理流程 # -*- coding: UTF-8 -*- import os i ...

  5. numpy基本用法

    numpy 简介 numpy的存在使得python拥有强大的矩阵计算能力,不亚于matlab. 官方文档(https://docs.scipy.org/doc/numpy-dev/user/quick ...

  6. ES6特性的两点分析

    块级作用域声明let.constES6中const 和let的功能,转换为ES5之后,我们会发现实质就是在块级作用改变一下变量名,使之与外层不同.ES6转换前: let a1 = 1; let a2 ...

  7. ubuntu下pycharm无法使用pip安装python包的修复方案

    1. 在pycharm 中安装python包会报错“pycharm ModuleNotFoundError: No module named 'distutils.core'”: 2. 可能原因:in ...

  8. KMP算法介绍

    简介 KMP算法是D.E.Knuth.J.H.Morris和V.R.Pratt共同提出的,称之为Knuth-Morris-Pratt算法,简称KMP算法.该算法与Brute-Force算法相比有较大改 ...

  9. php+nginx 限制上传文件大小

    问题:在后台上传8M大小的图片,上传不成功 nginx返回413,如下图所示: 分析:nginx配置文件或者php中,可上传的大小设置太小了 解决办法------检查nginx和php的配置文件里面的 ...

  10. zTree 点击文字 勾选check

    callback: { onClick:function(event, treeId, treeNode){ console.info("onClick") var treeObj ...