【HDOJ6118】度度熊的交易计划(费用流)
题意:
度度熊参与了喵哈哈村的商业大会,但是这次商业大会遇到了一个难题:
喵哈哈村以及周围的村庄可以看做是一共由n个片区,m条公路组成的地区。
由于生产能力的区别,第i个片区能够花费a[i]元生产1个商品,但是最多生产b[i]个。
同样的,由于每个片区的购买能力的区别,第i个片区也能够以c[i]的价格出售最多d[i]个物品。
由于这些因素,度度熊觉得只有合理的调动物品,才能获得最大的利益。
据测算,每一个商品运输1公里,将会花费1元。
那么喵哈哈村最多能够实现多少盈利呢?
1<=n<=500,
1<=m<=1000,
1<=a[i],b[i],c[i],d[i],k[i]<=1000,
1<=u[i],v[i]<=n
思路:明显的一个最小费用流模型 写的是最大费用流,注意没有要求流量最大
刚开始TooNaive先跑了一波最短路然后建的图
而后发现直接照原图建边,费用流过程中就会自动调整到最短路上
还是要学习一个
SPFA找的时候如果当前继续跑流会使利润减小就停止,即dis[src]<0
const inf=;
var q:array[..]of longint;
f:array[..,..]of longint;
a,b,c,d,dis:array[..]of longint;
head,vet,len1,len2,next:array[..]of longint;
pre:array[..,..]of longint;
inq:array[..]of boolean;
fan:array[..]of longint;
n,m,i,tot,t1,s,source,src,x,y,z,j:longint;
ans1,ans2:int64; procedure add(a,b,c,d:longint);
begin
inc(tot);
next[tot]:=head[a];
vet[tot]:=b;
len1[tot]:=c;
len2[tot]:=d;
head[a]:=tot;
end; function min(x,y:int64):int64;
begin
if x<y then min:=x
else min:=y;
end; function spfa:boolean;
var u,e,v,t,w,i:longint;
begin
for i:= to s do
begin
dis[i]:=-(maxlongint>>);
inq[i]:=false;
end;
t:=; w:=; q[]:=source; dis[source]:=; inq[source]:=true;
while t<w do
begin
inc(t); u:=q[t mod ]; inq[u]:=false;
e:=head[u];
while e<> do
begin
v:=vet[e];
if (len1[e]>)and(dis[u]+len2[e]>dis[v]) then
begin
dis[v]:=dis[u]+len2[e];
pre[v,]:=u;
pre[v,]:=e;
if not inq[v] then
begin
inc(w); q[w mod ]:=v; inq[v]:=true;
end;
end;
e:=next[e];
end;
end;
//if dis[src]=-(maxlongint>>) then spfa:=false
// else spfa:=true;
if dis[src]< then spfa:=false
else spfa:=true;
end; procedure mcf;
var k,e:longint;
t:int64;
begin
k:=src; t:=<<;
while k<>source do
begin
t:=min(t,len1[pre[k,]]);
k:=pre[k,];
end;
k:=src;
while k<>source do
begin
e:=pre[k,];
len1[e]:=len1[e]-t;
len1[fan[e]]:=len1[fan[e]]+t;
ans2:=ans2+t*len2[e];
k:=pre[k,];
end;
end; begin
assign(input,'1005.in'); reset(input);
assign(output,'1005.out'); rewrite(output);
for i:= to do
if i and = then fan[i]:=i+
else fan[i]:=i-;
while not eof do
begin
read(n,m);
tot:=;
if (n=)and(m=) then break;
for i:= to n do read(a[i],b[i],c[i],d[i]);
tot:=;
for i:= to n do head[i]:=;
source:=n+; src:=n+; s:=n+;
for i:= to n do
begin
add(source,i,b[i],-a[i]);
add(i,source,,a[i]);
end;
for i:= to n do
begin
add(i,src,d[i],c[i]);
add(src,i,,-c[i]);
end; for i:= to m do
begin
read(x,y,z);
add(x,y,maxlongint,-z);
add(y,x,,z);
add(y,x,maxlongint,-z);
add(x,y,,z);
end;
ans1:=; ans2:=;
while spfa do mcf;
writeln(ans2);
for i:= to s do head[i]:=;
for i:= to s do dis[i]:=;
for i:= to s do
for j:= to do pre[i,j]:=;
end;
close(input);
close(output); end.
【HDOJ6118】度度熊的交易计划(费用流)的更多相关文章
- hdu 6118度度熊的交易计划(费用流)
度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- HDU 6118 2017百度之星初赛B 度度熊的交易计划(费用流)
度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- 2017"百度之星"程序设计大赛 - 初赛(B) 度度熊的交易计划 最小费用最大流求最大费用
/** 题目:度度熊的交易计划 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6118 题意:度度熊参与了喵哈哈村的商业大会,但是这次商业大会遇到了一个难题 ...
- HDU 6118 度度熊的交易计划 【最小费用最大流】 (2017"百度之星"程序设计大赛 - 初赛(B))
度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- HDU 6118 度度熊的交易计划 (最小费用流)
度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- hdu 6118 度度熊的交易计划
度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- HDU 6118 度度熊的交易计划(最小费用最大流)
Problem Description度度熊参与了喵哈哈村的商业大会,但是这次商业大会遇到了一个难题: 喵哈哈村以及周围的村庄可以看做是一共由n个片区,m条公路组成的地区. 由于生产能力的区别,第i个 ...
- HDU 6118 度度熊的交易计划(网络流-最小费用最大流)
度度熊参与了喵哈哈村的商业大会,但是这次商业大会遇到了一个难题: 喵哈哈村以及周围的村庄可以看做是一共由n个片区,m条公路组成的地区. 由于生产能力的区别,第i个片区能够花费a[i]元生产1个商品,但 ...
- HDU 6118 度度熊的交易计划 最大费用可行流
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6118 题意:中文题 分析: 最小费用最大流,首先建立源点 s ,与超级汇点 t .因为生产一个商品需要 ...
随机推荐
- 前端组件化(二):优化 DOM 操作
看看上一节我们的代码,仔细留意一下 changeLikeText 函数,这个函数包含了 DOM 操作,现在看起来比较简单,那是因为现在只有 isLiked 一个状态.由于数据状态改变会导致需要我们去更 ...
- [BZOJ1008][HNOI2008]越狱 组合数学
http://www.lydsy.com/JudgeOnline/problem.php?id=1008 正着直接算有点难,我们考虑反着来,用全集减补集. 总的方案数为$m^n$.第一个人有$m$种可 ...
- Git ---创建和切换分支
······································································"天下武功,唯快不破" git分支: g ...
- 移动端1px线适配问题-------适配各种编译CSS工具 stylus sass styled-componet实现方法
其实在stylus与sass中实现移动端1像素线各个手机设备的适配问题的原理是一样的, 首先我还是先介绍一下原理和所依赖的方法 原理:其实他们都是通过css3的媒体查询来实现的 步骤思路: 1.给目标 ...
- java_StringBuffer、StringBuilder
StringBuffer和StringBuider是可变的字符串,使用方法 相同,StringBuffer是线程安全的,StringBuider是线程不安全的 public class StringT ...
- IP、CIDR、广播地址、子网掩码、MAC地址--这些是什么鬼
继续学习趣谈网络协议中的内容,认识几个专有名词,IP.CIDR.广播地址.子网掩码.MAC地址,这些都是什么鬼? 一.IP IP地址是一个网卡在网络世界的通讯地址,相当于我们现实世界的门牌号码 (1) ...
- 瀑布流布局js
<!DOCTYPE html><html><head> <meta http-equiv="Content-Type" content=& ...
- js文字内容部分选中的代码封装
var textSelect = function(o, a, b){ //o是当前对象,例如文本域对象 //a是起始位置,b是终点位置 var a = parseInt(a, 10), b = pa ...
- enote笔记法的思考(ver0.2)
章节:enote笔记法的思考 enote笔记法,它是一种独特的文本标记方式与呈现方式.这一整套系统的记笔记的方法,它能够帮助我们对文本内容(例如,其中的概念.观点.思想等)更加直观和条理地进行理性 ...
- php代码中注释的含义
最近在梳理和优化手上的项目代码,这个项目已经走过好几任了,每一任的开发人员多多少少都有一些差异和各自的习惯,所以代码逻辑和写法上都有点[乱]. 在代码中,注释是一个非常重要的信息,更何况是接手其他人的 ...