首先,我们珂以抽象出S函数的模型:把n拆成k个正整数,有多少种方案?

答案是C(n-1,k-1)。

然后发现我们要求的是一段连续的函数值,仔细思考,并根据组合数的性质,我们珂以发现实际上答案就是在让求2^(n-1)。

然鹅我们并不能高兴地过早。因为n的数量级竟然到了丧心病狂的1e100000.连高精度都救不了它。

费马小定理

费马小定理有两种形式:  $a^{p-1}$≡1($mod$ $p$)   与 $a^p$≡$a$($mod$ $p$)。 第二种形式更为通用,是因为第一种形式不能涵盖“$a$是$p$的倍数”的情况,不够完善。第二种更加严谨。

*  Update:其实这是扩展欧拉定理。思考了一上午后来被大佬告知这是一个定理...

定理可戳这位大佬的文章

那么对于本题。我们就求$2^{{n-1}%{p-1}}%p$就行了...还要大数取膜...恶心。

$Code$

 #include<cstdio>
#include<algorithm>
#include<cstring> using namespace std;
typedef long long ll;
const ll moder=1e9+; char seq[]; ll ksm(ll a,ll b)
{
ll ans=;
while(b)
{
if(b&) ans=ans*a%moder;
b>>=;
a=a*a%moder;
}
return ans;
} int main()
{
while(scanf("%s",seq+)!=EOF)
{
ll m=moder-;
ll tmp=;
int len=strlen(seq+);
for(int i=;i<=len;i++)
{
tmp=tmp*+seq[i]-'';
if(tmp>=m) tmp=tmp%m;
}
tmp=(tmp-+m)%m;
printf("%lld\n",ksm(,tmp));
}
return ;
}

hdu 4704 Sum【组合数学/费马小定理/大数取模】By cellur925的更多相关文章

  1. HDU 4704 Sum( 费马小定理 + 快速幂 )

    链接:传送门 题意:求 N 的拆分数 思路: 吐嘈:求一个数 N 的拆分方案数,但是这个拆分方案十分 cd ,例如:4 = 4 , 4 = 1 + 3 , 4 = 3 + 1 , 4 = 2 + 2 ...

  2. hdu 4704 sum(费马小定理+快速幂)

    题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1     4 s(2)=3     1,3      3,1       2,2 s ...

  3. HDU4704Sum 费马小定理+大数取模

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4704 题目大意: 看似复杂,其实就是求整数n的划分数,4=1+1+2和4=1+2+1是不同的.因而可 ...

  4. hdu 4704 Sum 【费马小定理】

    题目 题意:将N拆分成1-n个数,问有多少种组成方法. 例如:N=4,将N拆分成1个数,结果就是4:将N拆分成2个数,结果就是3(即:1+3,2+2,3+1)--1+3和3+1这个算两个,则这个就是组 ...

  5. HDU4675【GCD of scequence】【组合数学、费马小定理、取模】

    看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...

  6. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  7. 题解报告:hdu 6440 Dream(费马小定理+构造)

    解题思路:给定素数p,定义p内封闭的加法和乘法运算(运算封闭的定义:若从某个非空数集中任选两个元素(同一元素可重复选出),选出的这两个元素通过某种(或几种)运算后的得数仍是该数集中的元素,那么,就说该 ...

  8. Codeforces554C:Kyoya and Colored Balls(组合数学+费马小定理)

    Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are ...

  9. 第十四届华中科技大学程序设计竞赛 B Beautiful Trees Cutting【组合数学/费马小定理求逆元/快速幂】

    链接:https://www.nowcoder.com/acm/contest/106/B 来源:牛客网 题目描述 It's universally acknowledged that there'r ...

随机推荐

  1. Cocoapods Undefined symbols for architecture armv7s\arm64

    此类错误 "_OBJC_CLASS_$_AFURLSessionManager", referenced from: 解决的方法 在other linker flags里加入一行 ...

  2. mysql有哪几种索引

    从数据结构角度 1.  B+树索引(O(log(n))) 2.  hash索引 3.  FULLTEXT索引 4.  R-Tree索引 从物理存储角度 1. 聚集索引 2.  非聚集索引 从逻辑角度 ...

  3. spark0.9.1集群模式执行graphx測试程序(LiveJournalPageRank,新增Connected Components)

    spark最新版公布了.之前的版本号就已经集成了graphx,这个版本号还改了一些bug. 我做了简单測试,只是网上关于集群模式执行spark资料太少了,仅仅有关于EC2(见參考资料1)的.可是还非常 ...

  4. Spring Boot 动态数据源(多数据源自己主动切换)

    本文实现案例场景: 某系统除了须要从自己的主要数据库上读取和管理数据外.另一部分业务涉及到其它多个数据库,要求能够在不论什么方法上能够灵活指定详细要操作的数据库. 为了在开发中以最简单的方法使用,本文 ...

  5. URL 下载

    package URL; import java.io.File;import java.io.FileOutputStream;import java.io.IOException;import j ...

  6. Hadoop MapReduce输入输出类型

    一.输入格式 1.输入分片split 一个分片对应一个map任务: 一个分片包含一个表(整个文件)上的若干行,而一条记录(单行)对应一行: 分片包含一个以字节为单位的长度 和 一组存储位置,分片不包含 ...

  7. 安装mysql 8.0版本时,使用front连接报1251错误或者navicat 连接报错2059解决方案

    这个错误出现的原因是在mysql8之前的版本中加密规则为mysql_native_password,而在mysql8以后的加密规则为caching_sha2_password. 解决此问题有两种方法, ...

  8. Servlet session的理解

    servlet参见http://blog.csdn.net/bryanliu1982/article/details/5214899 session参见http://lavasoft.blog.51c ...

  9. RedisCluster集群搭建

    搭建集群方案 安装部署任何一个应用其实都很简单,只要安装步骤一步一步来就行了.下面说一下 Redis 集群搭建规划,由于集群至少需要6个节点(3主3从模式),所以,没有这么多机器给我玩,我本地也起不了 ...

  10. I.MX6 boot from Micro SD

    /***************************************************************************** * I.MX6 boot from Mic ...