首先,我们珂以抽象出S函数的模型:把n拆成k个正整数,有多少种方案?

答案是C(n-1,k-1)。

然后发现我们要求的是一段连续的函数值,仔细思考,并根据组合数的性质,我们珂以发现实际上答案就是在让求2^(n-1)。

然鹅我们并不能高兴地过早。因为n的数量级竟然到了丧心病狂的1e100000.连高精度都救不了它。

费马小定理

费马小定理有两种形式:  $a^{p-1}$≡1($mod$ $p$)   与 $a^p$≡$a$($mod$ $p$)。 第二种形式更为通用,是因为第一种形式不能涵盖“$a$是$p$的倍数”的情况,不够完善。第二种更加严谨。

*  Update:其实这是扩展欧拉定理。思考了一上午后来被大佬告知这是一个定理...

定理可戳这位大佬的文章

那么对于本题。我们就求$2^{{n-1}%{p-1}}%p$就行了...还要大数取膜...恶心。

$Code$

 #include<cstdio>
#include<algorithm>
#include<cstring> using namespace std;
typedef long long ll;
const ll moder=1e9+; char seq[]; ll ksm(ll a,ll b)
{
ll ans=;
while(b)
{
if(b&) ans=ans*a%moder;
b>>=;
a=a*a%moder;
}
return ans;
} int main()
{
while(scanf("%s",seq+)!=EOF)
{
ll m=moder-;
ll tmp=;
int len=strlen(seq+);
for(int i=;i<=len;i++)
{
tmp=tmp*+seq[i]-'';
if(tmp>=m) tmp=tmp%m;
}
tmp=(tmp-+m)%m;
printf("%lld\n",ksm(,tmp));
}
return ;
}

hdu 4704 Sum【组合数学/费马小定理/大数取模】By cellur925的更多相关文章

  1. HDU 4704 Sum( 费马小定理 + 快速幂 )

    链接:传送门 题意:求 N 的拆分数 思路: 吐嘈:求一个数 N 的拆分方案数,但是这个拆分方案十分 cd ,例如:4 = 4 , 4 = 1 + 3 , 4 = 3 + 1 , 4 = 2 + 2 ...

  2. hdu 4704 sum(费马小定理+快速幂)

    题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1     4 s(2)=3     1,3      3,1       2,2 s ...

  3. HDU4704Sum 费马小定理+大数取模

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4704 题目大意: 看似复杂,其实就是求整数n的划分数,4=1+1+2和4=1+2+1是不同的.因而可 ...

  4. hdu 4704 Sum 【费马小定理】

    题目 题意:将N拆分成1-n个数,问有多少种组成方法. 例如:N=4,将N拆分成1个数,结果就是4:将N拆分成2个数,结果就是3(即:1+3,2+2,3+1)--1+3和3+1这个算两个,则这个就是组 ...

  5. HDU4675【GCD of scequence】【组合数学、费马小定理、取模】

    看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...

  6. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  7. 题解报告:hdu 6440 Dream(费马小定理+构造)

    解题思路:给定素数p,定义p内封闭的加法和乘法运算(运算封闭的定义:若从某个非空数集中任选两个元素(同一元素可重复选出),选出的这两个元素通过某种(或几种)运算后的得数仍是该数集中的元素,那么,就说该 ...

  8. Codeforces554C:Kyoya and Colored Balls(组合数学+费马小定理)

    Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are ...

  9. 第十四届华中科技大学程序设计竞赛 B Beautiful Trees Cutting【组合数学/费马小定理求逆元/快速幂】

    链接:https://www.nowcoder.com/acm/contest/106/B 来源:牛客网 题目描述 It's universally acknowledged that there'r ...

随机推荐

  1. 【转载】VS工具使用——代码图

    代码图:     心想,反正也调不出来,就试试这个东西吧,一打开,就认识到自己发现了一个新大陆:这个代码图可以让我们对一个工程文件有大体的了解,即函数的调用关系等.它是一个VS2013自带工具生成函数 ...

  2. 高速查询hive数据仓库表中的总条数

    Author: kwu 高速查询hive数据仓库中的条数.在查询hive表的条数,通常使用count(*).可是数据量大的时候,mr跑count(*)往往须要几分钟的时间. 1.传统方式获得总条数例如 ...

  3. Ubuntu安装教程--Win7系统中含100M保留分区

    1.检查 Win7 保留分区 1)进入 Win7 打开库目录.在左側栏找到"计算机",瞄准点右键选择"管理"菜单: 2)在出来的管理面板左边找到"磁盘 ...

  4. ubuntu 系统启动时找不到根文件系统

    报出的错误大概为: Alert! /dev/disk/by-uuid/ ....... does not exist 最后进入了 initramdiskfs 的命令行终端 . 输入 blkid 命令却 ...

  5. MongoDB安装和简单介绍

    前面我们把nodejs的web开发入门说了,如今来说说数据库,一般搭配的数据库是mysql和mongodb,今天我们来说mongodb MongoDB是一个基于分布式文件存储的数据库,由C++语言编写 ...

  6. 通过定时任务 bash 脚本 控制 进程 的 执行时间

    通过定时任务 bash 脚本 控制 进程 的 执行时间

  7. bash_action

    https://stackoverflow.com/questions/12076326/how-to-install-maven2-on-redhat-linux #!/bin/bash # Tar ...

  8. HDU - 1269 迷宫城堡(有向图的强连通分量)

    d.看一个图是不是强连通图 s.求出强连通分量,看看有没有一个强连通分量包含所有点. c.Tarjan /* Tarjan算法 复杂度O(N+M) */ #include<iostream> ...

  9. java nio的一个严重BUG

    java nio的一个严重BUG Posted on 2009-09-28 19:27 dennis 阅读(4588) 评论(5)  编辑  收藏 所属分类: java .源码解读      这个BU ...

  10. UVA-10600(次小生成树)

    题意: 现在给一个图,问最小生成树和次小生成树的权值和是多少; 思路: 求最小生成树的两种方法,次小生成树是交换最小生成树的其中一条边得到的,现在得到了最小生成树,枚举不在次小生成树中的边,再求一边最 ...