hdu 6201 transaction (最短路变形——带负权最长路)
题意:
给定n个城市的货物买卖价格, 然后给定n-1条道路,每条路有不同的路费, 求出从某两个城市买卖一次的最大利润。
利润 = 卖价 - (买价 + 路费)
样例数据, 最近是从第一个点买入, 第4个点卖出, 利润为8
分析:
1.如果一条边连接(u,v),路费为cost ,城市买卖价格用P( )表示, 那么他的边权就表达为(P(v) - P(u) - cost).
2.我们可以假设有一个起点。他连接着所有的点,边权为0。
3.那么如果从这个点出发的话, 就等于是把所有的城市都尝试作为买入城市
4.然后只要做一次允许有副权的SPFA最短路算法就能算出正确答案了。
#include <cstdio>
#include <vector>
#include <queue>
#include <cstring>
using namespace std;
const int maxn = 1e5 + ;
int T,n;
int d[maxn], P[maxn], vis[maxn];
struct Node{
int num;
int dis;
Node(int a = , int b = ):num(a), dis(b){}
};
vector<Node> G[maxn];
int spfa(){
memset(d,-,sizeof(d));//因为要做最长路, 所以把初始值设为-1。
memset(vis,,sizeof(vis));
for(int i = ; i <= n; i++) G[].push_back(Node(i,)); // 虚拟一个起点,练向所有的点。
queue<int> q; d[] = ;
q.push();
vis[] = ;
while(!q.empty()){
int u = q.front();
for(int i = ; i < G[u].size(); i++){
int v = G[u][i].num;
if(d[v] < d[u] + G[u][i].dis){
d[v] = d[u] + G[u][i].dis;
if(!vis[v]){
q.push(v);
vis[v] = ;
}
}
}
q.pop();
vis[u] = ;
}
int ans = -;
for(int i = ; i <= n; i++){
ans = max(ans,d[i]);
}
// puts("");
return ans;
}
void init(int n){
for(int i = ; i <= n; i++ )
G[i].clear();
}
int main(){
scanf("%d", &T);
while(T--){
scanf("%d", &n);
for(int i = ; i <= n; i++){
scanf("%d", &P[i]);
} for(int i = ; i < n - ; i++){
int u , v, cost;
scanf("%d %d %d",&u, &v, &cost);
G[u].push_back(Node(v,P[v] - P[u] - cost));//双向边
G[v].push_back(Node(u,P[u] - P[v] - cost)); }
printf("%d\n",spfa());
init(n);//初始化临接表
}
}
hdu 6201 transaction (最短路变形——带负权最长路)的更多相关文章
- 图之单源Dijkstra算法、带负权值最短路径算法
1.图类基本组成 存储在邻接表中的基本项 /** * Represents an edge in the graph * */ class Edge implements Comparable< ...
- Expm 10_1 带负权值边的有向图中的最短路径问题
[问题描述] 对于一个带负权值边的有向图,实现Bellman-Ford算法,求出从指定顶点s到其余顶点的最短路径,并判断图中是否存在负环. package org.xiu68.exp.exp10; p ...
- HDU 6201 transaction transaction transaction(拆点最长路)
transaction transaction transaction Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 132768/1 ...
- hdu 6201 transaction transaction transaction
https://vjudge.net/contest/184514#problem/H 题意: 一个商人为了赚钱,在城市之间倒卖商品.有n个城市,每个城市之间有且只有一条无向边连通.给出n个城市的货物 ...
- SPFA 最短路 带负权边的---- 粗了解
SPFA(Shortest Path Faster Algorithm)是Bellman-Ford算法的一种队列实现,减少了不必要的冗余计算. 算法大致流程是用一个队列来进行维护. 初始时将源加入队列 ...
- Wormholes 最短路判断有无负权值
Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...
- poj 3259 bellman最短路推断有无负权回路
Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 36717 Accepted: 13438 Descr ...
- HDU 6201 transaction transaction transaction(树形DP)
transaction transaction transaction Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 132768/1 ...
- HDU - 6201 transaction transaction transaction(树形dp取两点)
transaction transaction transaction Kelukin is a businessman. Every day, he travels around cities to ...
随机推荐
- macOS 将【允许从以下位置下载的应用】设置为:任意来源
用管理员帐号进入Terminal: 1) 输入:sudo spctl --master-disable ,回车: 2) 重新进入该设置页面即可看到已生效:
- Centos6.8 配置 Tomcat
1.安装Tomcat,安装之前必须先安装Java,先安装java 下载地址:http://www.oracle.com/technetwork/java/javase/downloads/index. ...
- android ViewPager 与Fragment
ViewPager 左右滑动数据显示 1. 整体布局 FragmentLayout 容器包裹Fragment <?xml version="1.0" encoding=&qu ...
- docker监控之cadvisor
docker run -d \ --volume=/:/rootfs:ro \ --volume=/var/run:/var/run:rw \ --volume=/sys:/sys:ro \ --vo ...
- DataGridView 绑定List<>数据的更新
使用BindingSource做为中间数据源,使用 bindingSource1.DataSource = productOrderList;dataGridView1.DataSource = bi ...
- PoolManager插件(转载)
http://www.xuanyusong.com/archives/2974 前几天我在博客里面分享了为什么Unity实例化很慢的原因,并且也分享了一个缓存池的工具.有朋友给我留言说PoolMana ...
- VS配置本地IIS以域名访问
1.IIS下配置自己的网站,添加主机名 2.修改hosts文件(C://Windows/System32/drivers/etc) 3.VS中配置项目Web服务器(选择外部主机)
- AJPFX关于Set接口学习笔记及总结
Set接口中的方法和Collection中方法一致的.Set接口取出方式只有一种,迭代器. |--HashSet:底层数据结构是哈希表,线程是不同步的.无序,高效: HashSet集合保证元素唯一性: ...
- springboot项目启动问题
在调试项目的时候有遇到这样一个问题: 项目启动后访问不通,编译没有任何问题,启动也没有报错,日志在打,但是访问不通.而且之前一直可以正常访问,在没改任何代码的情况下不能访问了. 尝试很多次偶然发现,点 ...
- 1. UI Tests简介
(1) User Interface Testing UI Testing库主要提供了与App中的UI元素进行查找和交互的能力,这使得我们可以通过验证UI元素的状态来测试App是否正常运行. ...