bzoj2179
fft裸题 我还没有背下来fft
#include<bits/stdc++.h>
#define pi acos(-1)
using namespace std;
const int N = ;
int n, m, L, x;
int r[N];
complex<double> a[N], b[N];
void fft(complex<double> *a, int f)
{
for(int i = ; i < n; ++i) if(i < r[i]) swap(a[i], a[r[i]]);
for(int i = ; i < n; i <<= )
{
complex<double> t(cos(pi / i), f * sin(pi / i));
for(int p = i << , j = ; j < n; j += p)
{
complex<double> w(, );
for(int k = ; k < i; ++k, w *= t)
{
complex<double> x = a[j + k], y = w * a[j + k + i];
a[j + k] = x + y; a[j + k + i] = x - y;
}
}
}
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i <= n; ++i) scanf("%d", &x), a[i] = x;
for(int i = ; i <= m; ++i) scanf("%d", &x), b[i] = x;
m = n + m; for(n = ; n <= m; n <<= ) ++L;
for(int i = ; i < n; ++i) r[i] = (r[i >> ] >> ) | ((i & ) << (L - ));
fft(a, ); fft(b, );
for(int i = ; i <= n; ++i) a[i] = a[i] * b[i];
fft(a, -);
for(int i = ; i <= m; ++i) printf("%d ", (int)(a[i].real() / n + 0.5));
return ;
}
bzoj2179的更多相关文章
- 【BZOJ2179】FFT快速傅立叶
[BZOJ2179]FFT快速傅立叶 Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位 ...
- [bzoj2179]FFT快速傅立叶_FFT
FFT快速傅立叶 bzoj-2179 题目大意:给出两个n位10进制整数x和y,你需要计算x*y. 注释:$1\le n\le 6\times 10^4$. 想法: $FFT$入门题. $FFT$实现 ...
- BZOJ2179: FFT快速傅立叶 & caioj1450:【快速傅里叶变换】大整数乘法
[传送门:BZOJ2179&caioj1450] 简要题意: 给出两个超级大的整数,求出a*b 题解: Rose_max出的一道FFT例题,卡掉高精度 = =(没想到BZOJ也有) 只要把a和 ...
- 【BZOJ-2179&2194】FFT快速傅里叶&快速傅里叶之二 FFT
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2978 Solved: 1523[Submit][Status][Di ...
- bzoj2179: FFT快速傅立叶
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> ...
- 【bzoj2179】FFT快速傅立叶 FFT模板
2016-06-01 09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include& ...
- FFT模板(BZOJ2179)
实现了两个长度为n的大数相乘. #include <cstdio> #include <cmath> #include <complex> using namesp ...
- bzoj千题计划166:bzoj2179: FFT快速傅立叶
http://www.lydsy.com/JudgeOnline/problem.php?id=2179 FFT做高精乘 #include<cmath> #include<cstdi ...
- BZOJ2179:FFT快速傅立叶(FFT)
Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出 ...
- 【bzoj2179】FFT快速傅立叶 FFT
题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. 输出 输出一行,即x*y的结果. 样例 ...
随机推荐
- Eureka组件、Eureka自我保护模式
Eureka包含两个组件:Eureka Server和Eureka Client Eureka Server提供服务发现的能力,各个微服务启动时,会向Eureka Server注册自己的信息(例如 ...
- 用 Systemtap 统计 TCP 连接
转自: https://mp.weixin.qq.com/s?__biz=MzIxMjAzMDA1MQ==&mid=2648946009&idx=1&sn=3a0be2fe4f ...
- P1048 采药(洛谷,动态规划递推,01背包原题)
题目直接放链接 P1048 采药 这题只是01背包+背景故事而已 原题来的 PS:我写了一篇很详细的01背包说明,如果下面ac代码有看不懂的地方可以去看看 对01背包的分析与理解(图文) 下面上ac代 ...
- centos7在grub界面下更改root密码
想要更改root的密码或者忘记了root的密码的时候可以在grub界面下更改root的密码. 百度了很多内容,更多方法都是适用于centos6及以前版本的,终于找到一个可以的. 1.开机后,在下图界面 ...
- 【Codeforces 1034A】Enlarge GCD
[链接] 我是链接,点我呀:) [题意] 题意 [题解] 设原来n个数字的gcd为g 减少某些数字之后 新的gcd肯定是g的倍数 即gx 我们可以枚举这个x值(x>=2) 看看原来的数字里面有多 ...
- Java基础学习总结(77)——Java枚举再总结
在Java SE5之前,我们要使用枚举类型时,通常会使用static final 定义一组int常量来标识,代码如下 public static final int MAN = 0; public s ...
- MongoDB增加用户、删除用户、修改用户读写权限及只读权限(注:转载于http://www.2cto.com/database/201203/125025.html)
MongoDB 增加用户 删除用户 修改用户 读写权限 只读权限, MongoDB用户权限分配的操作是针对某个库来说的.--这句话很重要. 1. 进入ljc 数据库: use ...
- image url to base64
image url to base64 https://www.base64-image.de/ https://www.browserling.com/tools/image-to-base64 h ...
- python——正则表达式的理解
概念:又称规则表达式,常用来检索.替换符合某个规则的文本. 理解:特殊字符--------->规则---------->过滤字符串 目的:1.匹配给定的字符串,2.从字符串中过滤出我们需要 ...
- 2.2 convex hull凸包
1.定义:一组平面上的点,求一个包含所有点的最小的凸多边形,就是凸包问题. 利用编程解决凸包问题,应该得到一组逆时针的顶点的顺序集合,在边上但不是顶点,则不包含在集合里. 2.机械的方法:将点所在的位 ...