2017多校Round5(hdu6085~hdu6095)
补题进度:7/11
1001(模意义下的卷积)
题意:
给出长度<=50000的两个数组A[] B[],保证数组中的值<=50000且A[]中数字两两不同,B[]中数字两两不同
有50000个询问,对于每个询问k,你需要回答有多少对(i,j)满足A[i]%B[j]==k,你只需要回答答案的奇偶性就行了
分析:
我们容易想到询问k要全部预处理出来
$$ans[k]=\sum_{i mod j=k} {A[i]*B[j]}$$
这实际上是个模意义下的卷积,套路是枚举余数和倍数
我们可以枚举B的下标i,然后枚举一个倍数j,那么等价于每次将$A[j*i...(j+1)*i-1]$加到$ans[0..i-1]$上
因为是在模2意义下的加法,所以就是异或
想到用一个bitset维护A和ans,那么复杂度就从$O(n ^ {2})$降到了$O(\frac {n^{2}} {64})$
但是STL里的bitset不支持取区间的操作,所以只能自己手写bitset压位,然后手动取区间
1002(AC自动机+DP)
题意:
给出不超过6个01字符串,每个长度不超过20,现在你要构造长度为2L的特殊字符串,即前L个位置与后L个位置的对称位置字符一定要不同
问一共有多少种长度为2L的特殊字符串可以包含所有输入的01字符串
分析:
如果仅仅是问有多少个长度为L的字符串可以包含所有输入字符串,那么就是个经典的AC自动机+DP
&dp[i][j][s]&表示我走了i步,当前在自动机的j节点,已经走出的字符串集合为s的方案数
对于此问题,我们只需要走出长度L就行了,另一半的L对应就出来了
我们可以把给定的字符串插入自动机,然后把字符串的逆序插入自动机
但是还要考虑跨中间的情况
所以我们可以对于每个字符串,去枚举中间点,它会对应出一个左边字符串,我们把这个也加入自动机
但是注意“跨中间字符串”只能在最后一个位置匹配,不能在前面位置匹配,所以我们对“跨中间字符串”与普通字符串要在自动机上分开标记
1003
待填坑
1004(莫比乌斯反演+FFT)
题意:
A和B进行n次石头剪刀布,获胜、失败、平局的概率都是$\frac {1} {3}$
如果A赢了a局,B赢了b局,平了n-a-b局,那么这比赛的价值就是$gcd(a,b)$
输出比赛价值期望,以$ans*3^{2n}$输出
分析:
首先容易分析出结果式子
$$ans=3^{n} * \sum_{i=0}^{n}\sum _{j=0}^{n-i}\binom{n}{i}\binom{n-i}{j}*gcd(i,j)$$
然后看见这种求和式里有gcd,就容易想到枚举因子把它反演掉
$$ans=3^{n} * \sum_{d=1}^{n} \phi (d)\sum_{i=0}^{\frac{n}{d}}\sum _{j=0}^{\frac{n}{d}-i}\binom{n}{id}\binom{n-id}{jd}$$
第一个$\sum$可以直接枚举d,然后后面长得很像卷积,感觉可以FFT优化,我们分析一下后面的式子
我们把阶乘式子拆出来,然后化简
$$f(i)=\frac{1}{(id)!}$$
$$g(i+j)=\frac{1}{(n-(i+j)d)!}$$
$$ans[j]=\sum f(i)*g(i+j)$$
每次后面的是个$\frac{n}{d}$级别的FFT,所以总的时间复杂度是$O(nlog^{2}n)$的
1005
待填坑
1006(贪心)
贪心构一个菊花图,分情况列下式子即可
1007
待填坑
1008(dp)
一个数字的个数由两部分组成,一种是由前面数字组合而成,另一种是本身存在于集合里,所以只需要把之前的数字进行背包,得出组成该数字的方案x,将b[num]-x,得到的就是本身存在于集合里的num个数
1009(康托展开)
题意:
一个数称为好数当且仅当存在某一个d,将这个数转成d进制,恰好有d位,且系数是0~d-1的排列,当然首位不能为0
询问一个区间[l,r]内好数的个数,$r\leqslant 10^{5000}$
分析:
肯定是枚举进制d,去看看[1..x]内有多少个好数
一定是前面一些d都在x之内,容易发现这样对于每个d,方案数就是$d!-(d-1)!$
然后我们会找到一个d,这个d能产生的所有好数中部分比x大,部分比x小
我们可以将该数字转成d进制(不断高精度除),然后用类似康托展开的方法求方案数
这里值得一提就是找d的过程,我们可以根据$n^n$来估计一个进制最大的位数,然后去很方便地判断d进制是否是当前数字的临界进制
注意细节就是数字比较小的时候我们可以枚举前面的一些小进制使得不遗漏,并且找到d之后,我们再去算算d-1,d+1
时间复杂度$O(len^2)$
1010
待填坑
1011(贪心)
略
2017多校Round5(hdu6085~hdu6095)的更多相关文章
- hdu6085[压位+暴力] 2017多校5
/*hdu6085[压位+暴力] 2017多校5*/ /*强行优化..*/ #include <bits/stdc++.h> using namespace std; struct bit ...
- 2017 多校5 hdu 6093 Rikka with Number
2017 多校5 Rikka with Number(数学 + 数位dp) 题意: 统计\([L,R]\)内 有多少数字 满足在某个\(d(d>=2)\)进制下是\(d\)的全排列的 \(1 & ...
- 2017 多校5 Rikka with String
2017 多校5 Rikka with String(ac自动机+dp) 题意: Yuta has \(n\) \(01\) strings \(s_i\), and he wants to know ...
- 2017 多校4 Wavel Sequence
2017 多校4 Wavel Sequence 题意: Formally, he defines a sequence \(a_1,a_2,...,a_n\) as ''wavel'' if and ...
- 2017 多校4 Security Check
2017 多校4 Security Check 题意: 有\(A_i\)和\(B_i\)两个长度为\(n\)的队列过安检,当\(|A_i-B_j|>K\)的时候, \(A_i和B_j\)是可以同 ...
- 2017 多校3 hdu 6061 RXD and functions
2017 多校3 hdu 6061 RXD and functions(FFT) 题意: 给一个函数\(f(x)=\sum_{i=0}^{n}c_i \cdot x^{i}\) 求\(g(x) = f ...
- 2017 多校2 hdu 6053 TrickGCD
2017 多校2 hdu 6053 TrickGCD 题目: You are given an array \(A\) , and Zhu wants to know there are how ma ...
- 2017 多校1 I Curse Myself
2017 多校2 I Curse Myself(第k小生成树) 题目: 给一张带权无向连通图,该图的任意一条边最多只会经过一个简单环,定义\(V(k)为第k小生成树的权值和\),求出\(\sum_{k ...
- hdu6136[模拟+优先队列] 2017多校8
有点麻烦.. /*hdu6136[模拟+优先队列] 2017多校8*/ #include <bits/stdc++.h> using namespace std; typedef long ...
随机推荐
- Boxes And Balls(三叉哈夫曼编码)
题目 原题链接:http://codeforces.com/problemset/problem/884/D 现有一堆小石子,要求按要求的数目分成N堆,分别为a1.a2....an.具体的,每次选一个 ...
- dircolors - 设置‘ls'显示结果的颜色
SYNOPSIS[总览] dircolors [-b] [--sh] [--bourne-shell] [-c] [--csh] [--c-shell] [-p] [--print-database] ...
- String系列之replaceAll方法替换.
直接使用String类的replaceall方法的第一个参数并不是简单的字符串,而是一个正则表达式.在正则表达式中,英文点号(.)表示任意字符,所以你原先的写法会把所有字符都替换成空白. 转义使用所以 ...
- vc枚举本机端口信息API
常用的获取端口信息的函数: GetTcpTableGetExtendedTcpTableGetUdpTableGetExtendedUdpTable GetTcp6Table function Get ...
- 微信小程序---协同工作和发布
(1)协同开发和发布 在中大型的公司里,人员的分工非常仔细,一般会有不同岗位角色的员工同时参与同一个小程序项目.为此,小程序平台设计了不同的权限管理使得项目管理者可以更加高效管理整个团队的协同工作. ...
- java读取nc文件的问题,前端ajax 发送参数进行交互的实例
1.问题背景: 需要解析nc文件的数据源,获取一个三维数据,并计算器开发值. java 后台处理: 定以一个实例来接收解析的数据并返回给前端. package cn.edu.shou.domain; ...
- 解决浏览器自动填充input
浏览器输入框自动填充解决办法 emmmmm:今天处理公司后台系统遇到的:登录页面浏览器保存账号密码后:浏览器会自动在其他页面进行填充:解决如下图: 浏览器会默认填充input type值为passwo ...
- 树莓派 - RasberryPi推送数据到cloudMQTT
创建用户 在https://www.cloudmqtt.com/上创建一个帐户 转到右上角的控制面板 点击"创建"按钮 安装lib sudo pip install paho-mq ...
- debian 添加永久环境变量方法
添加临时环境变量方法: export PATH=$PATH:/usr/local/....(你的环境变量路径) 永久添加环境变量,步骤如下: #在~/.bashrc文件末尾添加如下: PATH = $ ...
- JavaIO基础学习笔记
JavaIO JavaIO即Java的输入输出系统.比如我们的程序要读取一个文本文件.一张图片或者要获取控制台输入的内容,就要用到输入流:又或者程序要将生成的一段字符窜以文件的形式保存到系统中就要用到 ...