Replacing Threads with Dispatch Queues
Replacing Threads with Dispatch Queues
To understand how you might replace threads with dispatch queues, first consider some of the ways you might be using threads in your application today:
Single task threads. Create a thread to perform a single task and release the thread when the task is done.
Worker threads. Create one or more worker threads with specific tasks in mind for each. Dispatch tasks to each thread periodically.
Thread pools. Create a pool of generic threads and set up run loops for each one. When you have a task to perform, grab a thread from the pool and dispatch the task to it. If there are no free threads, queue the task and wait for a thread to become available.
Although these might seem like dramatically different techniques, they are really just variants on the same principle. In each case, a thread is being used to run some task that the application has to perform. The only difference between them is the code used to manage the threads and the queueing of tasks. With dispatch queues and operation queues, you can eliminate all of your thread and thread-communication code and instead focus on just the tasks you want to perform.
If you are using one of the above threading models, you should already have a pretty good idea of the type of tasks your application performs. Instead of submitting a task to one of your custom threads, try encapsulating that task in an operation object or a block object and dispatching it to the appropriate queue. For tasks that are not particularly contentious—that is, tasks that do not take locks—you should be able to make the following direct replacements:
For a single task thread, encapsulate the task in a block or operation object and submit it to a concurrent queue.
For worker threads, you need to decide whether to use a serial queue or a concurrent queue. If you use worker threads to synchronize the execution of specific sets of tasks, use a serial queue. If you do use worker threads to execute arbitrary tasks with no interdependencies, use a concurrent queue.
For thread pools, encapsulate your tasks in a block or operation object and dispatch them to a concurrent queue for execution.
Of course, simple replacements like this may not work in all cases. If the tasks you are executing contend for shared resources, the ideal solution is to try to remove or minimize that contention first. If there are ways that you can refactor or rearchitect your code to eliminate mutual dependencies on shared resources, that is certainly preferable. However, if doing so is not possible or might be less efficient, there are still ways to take advantage of queues. A big advantage of queues is that they offer a more predictable way to execute your code. This predictability means that there are still ways to synchronize the execution of your code without using locks or other heavyweight synchronization mechanisms. Instead of using locks, you can use queues to perform many of the same tasks:
If you have tasks that must execute in a specific order, submit them to a serial dispatch queue. If you prefer to use operation queues, use operation object dependencies to ensure that those objects execute in a specific order.
If you are currently using locks to protect a shared resource, create a serial queue to execute any tasks that modify that resource. The serial queue then replaces your existing locks as the synchronization mechanism. For more information techniques for getting rid of locks, see Eliminating Lock-Based Code.
If you use thread joins to wait for background tasks to complete, consider using dispatch groups instead. You can also use an
NSBlockOperationobject or operation object dependencies to achieve similar group-completion behaviors. For more information on how to track groups of executing tasks, see Replacing Thread Joins.If you use a producer-consumer algorithm to manage a pool of finite resources, consider changing your implementation to the one shown in Changing Producer-Consumer Implementations.
If you are using threads to read and write from descriptors, or monitor file operations, use the dispatch sources as described in Dispatch Sources.
It is important to remember that queues are not a panacea for replacing threads. The asynchronous programming model offered by queues is appropriate in situations where latency is not an issue. Even though queues offer ways to configure the execution priority of tasks in the queue, higher execution priorities do not guarantee the execution of tasks at specific times. Therefore, threads are still a more appropriate choice in cases where you need minimal latency, such as in audio and video playback.
https://developer.apple.com/library/content/documentation/General/Conceptual/ConcurrencyProgrammingGuide/ThreadMigration/ThreadMigration.html#//apple_ref/doc/uid/TP40008091-CH105-SW10
Replacing Threads with Dispatch Queues的更多相关文章
- Dispatch Queues and Thread Safety
Dispatch Queues and Thread Safety It might seem odd to talk about thread safety in the context of di ...
- iOS 并行编程:GCD Dispatch Queues
1 简介 1.1 功能 Grand Central Dispatch(GCD)技术让任务并行排队执行,根据可用的处理资源,安排他们在任何可用的处理器核心上执行任务.任务可以是一个函数 ...
- Dispatch Queues 线程池
Dispatch Queues Dispatch queues are a C-based mechanism for executing custom tasks. A dispatch queue ...
- Multithreading annd Grand Central Dispatch on ios for Beginners Tutorial-多线程和GCD的入门教程
原文链接:Multithreading and Grand Central Dispatch on iOS for Beginners Tutorial Have you ever written a ...
- Multithreading and Grand Central Dispatch on iOS for Beginners Tutorial
Have you ever written an app where you tried to do something, and there was a long pause while the U ...
- iOS 并发编程之 Operation Queues
现如今移动设备也早已经进入了多核心 CPU 时代,并且随着时间的推移,CPU 的核心数只会增加不会减少.而作为软件开发者,我们需要做的就是尽可能地提高应用的并发性,来充分利用这些多核心 CPU 的性能 ...
- iOS - Threads 多线程
1.Threads 1.1 进程 进程是指在系统中正在运行的一个应用程序.每个进程之间是独立的,每个进程均运行在其专用且受保护的内存空间内. 比如同时打开 QQ.Xcode,系统就会分别启动两个进程. ...
- GCD & Operation queues & Thread
One of the technologies for starting tasks asynchronously is Grand Central Dispatch (GCD). This tech ...
- usr/include/dispatch - dispatch_source
博文一部分摘自:Parse分析,以下简称博文1(LeanCloud工程师针对Parse使用GCD的分析) 博文一部分摘自:GCD入门,以下简称博文2 建议先了解一下:BSD基础知识 在Dispatch ...
随机推荐
- 晶振虚焊导致TI 28335 DSP 烧写FLASH后,连接仿真器时正常工作,拔掉仿真器却不能启动运行
遇到个诡异的问题,28335的DSP,之前程序调试一切正常,但是烧写FLASH后,拔掉仿真器却始终部工作. 解决思路: 1) 检查配置文件貌似没什么问题,复制到其他工程,在开发板上拔掉仿真器启动正常. ...
- spring mvc日期转换(前端到后端,后端到前端)
在做web开发的时候,页面传入的都是String类型,SpringMVC可以对一些基本的类型进行转换,但是对于日期类的转换可能就需要我们配置. 1.如果查询类使我们自己写,那么在属性前面加上@Date ...
- mybatis mapper文件sql语句传入hashmap参数
1.怎样在mybatis mapper文件sql语句传入hashmap参数? 答:直接这样写map就可以 <select id="selectTeacher" paramet ...
- 怎样编译和安装memcached
怎样编译和安装memcached 编译和安装步骤: $ apt-get install git $ git clone https://github.com/memcached/memcache ...
- A Taxonomy for Performance
A Taxonomy for Performance In this section, we introduce some basic performance metrics. These provi ...
- poj-1635 Subway tree systems(推断两个有根树是否同构)-哈希法
Description Some major cities have subway systems in the form of a tree, i.e. between any pair of st ...
- layoutSubviews, setNeedsLayout, layoutIfNeeded
layoutSubviews总结 ios layout机制相关方法 - (CGSize)sizeThatFits:(CGSize)size- (void)sizeToFit——————- - (voi ...
- ClipboardEvent.clipboardData
ClipboardEvent.clipboardData https://developer.mozilla.org/en-US/docs/Web/API/ClipboardEvent/clipboa ...
- C++之内部类(内部类就是外部类的友元类,单向友元。只是内部类比友元类多了一点权限)
1. 内部类的概念 如果一个类定义在另一个类的内部,这个内部类就叫做内部类.注意此时这个内部类是一个独立的类,它不属于外部类,更不能通过外部类的对象去调用内部类.外部类对内部类没有任何优越的访问权限. ...
- ios5--计算器
// // ViewController.m // 01-加法计算器 // // 首先找main.m文件,然后找AppDelegate,然后找Main Inteferce主交互故事板,然后加载箭头指向 ...