bzoj 1565 [NOI2009]植物大战僵尸【tarjan+最大权闭合子图】
一上来以为是裸的最大权闭合子图,上来就dinic
…然后没过样例。不得不说样例还是非常良心的给了一个强连通分量,要不然就WA的生活不能自理了
然后注意到有一种特殊情况:每个植物向他保护的植物连边(包括被其挡在后面的),当植物的保护范围连成一个强连通分量时,这个强连通分量上的植物以及从这个强连通分量连出去的植物,都不会在任何情况下被攻击
如下图:

12345所形成的强连通分量不会被攻击,所以它所延伸出来的植物也不会被攻击,即图上所有点都不会被攻击
对于这种情况,用tarjan缩点,对于每个缩后的点记录一个size,对于所有 \(size[belong[u]]>1\) 的点向外dfs,记录不会被攻击到的点即可
删去所有不会被攻击到的点及其所连的边之后,跑最大权闭合子图。
具体如下:
- s点向所有正权点连边,流量为点权;所有负权点向t连边,流量为负点权(即正数!)
- 对于所有有依赖关系的点,由被保护的植物向保护植物连边(也就是把上面为tarjan建的图所有有向边反过来),也就是最大权闭合子图中的向其依赖点连边,流量为inf
\]
- 割的意义:与原点相连的点表示被选择,与汇点相连的点表示不选
- S连向正权点的边被割:说明正权点被划入T侧,代表不选,收益被扣除
- 负权点连向T的边被割:说明负权点被划入S侧,代表被选,要承受惩罚
- 有依赖关系的点之间无法被割:a-->b,则如果a在S侧那b也一定在S侧
莫名跑的慢,大概是写丑了
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<vector>
using namespace std;
const int E=1000005,inf=1e9,N=55,P=1005;
int n,m,sum,h[E],cnt,le[E],s,t,v[N][N],dfn[P],tot,low[P],st[P],top,con,bl[P],si[P];
bool in[P];
vector<pair<int,int> >vec;
struct qwe
{
int ne,to,va;
}e[E<<1];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void addd(int u,int v)
{//cout<<u<<" "<<v<<endl;
vec.push_back(make_pair(u,v));
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
h[u]=cnt;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{//cout<<u<<" "<<v<<" "<<w<<endl;
add(u,v,w);
add(v,u,0);
}
bool bfs()
{
queue<int>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(u==t||!f)
return f;
int us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(le[e[i].to]==le[u]+1&&e[i].va>0)
{
int t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
int dinic()
{
int re=0;
while(bfs())
re+=dfs(s,inf);
return re;
}
void dfs(int u)
{
in[u]=1;
for(int i=h[u];i;i=e[i].ne)
if(!in[e[i].to])
dfs(e[i].to);
}
void tarjan(int u)
{//cout<<u<<endl;
dfn[u]=low[u]=++tot;
in[u]=1;
st[++top]=u;
for(int i=h[u];i;i=e[i].ne)
{
if(!dfn[e[i].to])
{
tarjan(e[i].to);
low[u]=min(low[u],low[e[i].to]);
}
else if(in[e[i].to])
low[u]=min(low[e[i].to],dfn[e[i].to]);
}
if(dfn[u]==low[u])
{
con++;
while(st[top]!=u)
{
in[st[top]]=0;
bl[st[top--]]=con;
si[con]++;
}
in[st[top]]=0;
bl[st[top--]]=con;
si[con]++;
}
}
int main()
{
n=read(),m=read();
t=n*m+1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
v[i][j]=read();
int id=(i-1)*m+j,w=read(); //cout<<sor<<" "<<w<<endl;
if(j>1)
addd(id,id-1);
while(w--)
{
int x=read()+1,y=read()+1;
addd(id,(x-1)*m+y);
}
}//cout<<"ok"<<endl;
for(int i=1;i<=n*m;i++)
if(!dfn[i])
tarjan(i);//,cout<<i<<endl;
for(int i=1;i<=n*m;i++)
if(si[bl[i]]>1&&!in[i])
dfs(i);
cnt=1;
memset(h,0,sizeof(h));
memset(e,0,sizeof(e));
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(!in[(i-1)*m+j])
{
int x=(i-1)*m+j;
if(v[i][j]>=0)
ins(s,x,v[i][j]),sum+=v[i][j];
else
ins(x,t,-v[i][j]);
}
for(int i=0;i<vec.size();i++)
if(!in[vec[i].first]&&!in[vec[i].second])
ins(vec[i].second,vec[i].first,inf);//cout<<"ok"<<endl;
printf("%d\n",sum-dinic());
return 0;
}
bzoj 1565 [NOI2009]植物大战僵尸【tarjan+最大权闭合子图】的更多相关文章
- BZOJ1565 [NOI2009]植物大战僵尸 【最大权闭合子图 + tarjan缩点(或拓扑)】
题目 输入格式 输出格式 仅包含一个整数,表示可以获得的最大能源收入.注意,你也可以选择不进行任何攻击,这样能源收入为0. 输入样例 3 2 10 0 20 0 -10 0 -5 1 0 0 100 ...
- bzoj 1565 [NOI2009]植物大战僵尸 解题报告
1565: [NOI2009]植物大战僵尸 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2161 Solved: 1000[Submit][Stat ...
- BZOJ 1565: [NOI2009]植物大战僵尸( 最小割 )
先拓扑排序搞出合法的, 然后就是最大权闭合图模型了.... --------------------------------------------------------------------- ...
- Bzoj 1565: [NOI2009]植物大战僵尸 最大权闭合图,拓扑排序
题目: http://cojs.tk/cogs/problem/problem.php?pid=410 410. [NOI2009] 植物大战僵尸 ★★★ 输入文件:pvz.in 输出文件:p ...
- BZOJ 1565 NOI2009 植物大战僵尸 topo+最小割(最大权闭合子图)
题目链接:https://www.luogu.org/problemnew/show/P2805(bzoj那个实在是有点小小的辣眼睛...我就把洛谷的丢出来吧...) 题意概述:给出一张有向图,这张有 ...
- BZOJ 1565 [NOI2009]植物大战僵尸 | 网络流
传送门 BZOJ 1565 题解 这道题也是个经典的最大权闭合子图-- 复习一下最大权闭合子图是什么? 就是一个DAG上,每个点有个或正或负的点权,有的点依赖于另外一些点(如果选这个点,则被依赖点必选 ...
- BZOJ 1565: [NOI2009]植物大战僵尸(网络流+缩点)
传送门 解题思路 最大权闭合子图.但是要注意一些细节,假如有一堆植物形成一个环,那么这些植物都是无敌的,并且他们保护的植物是无敌的,他们保护的保护的植物是无敌 的.所以要缩点,然后拓扑排序一次判无敌, ...
- 【BZOJ1565】【NOI2009】植物大战僵尸 网络流 最大权闭合子图
题目大意 给你一个\(n\times m\)的地图,每个格子上都有一颗植物,有的植物能保护其他植物.僵尸从右往左进攻,每吃掉一颗植物就可以得到\(a_{i,j}\)的收益(\(a_{i,j}\)可 ...
- BZOJ 1565 Luogu P2805 [NOI2009]植物大战僵尸 (Tarjan判环、最小割)
我: "立个flag 14点之前调完这题" 洛谷AC时间: 2019-06-24 14:00:16 实力打脸... 网络流板子从来写不对系列 题目链接: (BZOJ) https: ...
随机推荐
- 51nod 1907(多项式乘法启发式合并)
题目: 分析: 对于一个确定的生成子图,很明显是在一个连通块上走,走完了再跳到另一个连通块上,假设连通块个数为cnt,那么答案一定是$min(a_{cnt-1},a_cnt,..,a_{n-1})$ ...
- 2017多校Round10(hdu6171~hdu6181)
补题进度:5/11 1001(双向BFS) 题意: 给你一个类似移子游戏,给你初始状态和终止状态,问初始状态到终止状态至少要移多少步,如果步数>20就-1 分析: 很明显的BFS了,不过普通的B ...
- 系统安全攻防战:DLL注入技术详解
DLL注入是一种允许攻击者在另一个进程的地址空间的上下文中运行任意代码的技术.攻击者使用DLL注入的过程中如果被赋予过多的运行特权,那么攻击者就很有可能会在DLL文件中嵌入自己的恶意攻击代码以获取更高 ...
- 题目1011:最大连续子序列 O(n)
题目大意:给出一系列的数字.要求你输出这些数字的最大连续和,并输出构成这个最大连续和的第一个数和最后一个数 解题思路:用一个变量维护最大连续和 假设当前这个变量小于0的话,就表示这个变量仅仅会拉低连续 ...
- HDU 4786(最小生成树 kruskal)
题目链接:pid=4786" target="_blank">http://acm.hdu.edu.cn/showproblem.php?pid=4786 Prob ...
- Web—CSS概述
一.概念: 它是一种用来表现HTML(标准通用标记语言的一个应用)或XML(标准通用标记语言 的一个子集)等文件样式的计算机语言. 二.特点: 1.实现网页内容与样式的分离 2.降低图形文件的 ...
- 使用Blender批量导出/转换模型
2.4版本号的Blender API和2.5以上版本号的API有非常大的不同,这里仅仅是提供了思路和2.4版本号的导出方案. 先提供一个脚本,这个是由Blender调用的.用于转换Ogre的Mesh文 ...
- python各进制、字节串间的转换
>>> i = 13 >>> bin(i) '0b1101' >>> oct(i) '0o15' >>> hex(i) '0xd ...
- PyTorch 60 分钟入门教程:PyTorch 深度学习官方入门中文教程
什么是 PyTorch? PyTorch 是一个基于 Python 的科学计算包,主要定位两类人群: NumPy 的替代品,可以利用 GPU 的性能进行计算. 深度学习研究平台拥有足够的灵活性和速度 ...
- 5.eclipse 自带的jdk没有源码,改了它
其实JDK源码在安装的时候已经放在了jdk所在的目录下,只是eclipse使用 了不带有源码的jre,导致没找到对应的源码,点击 Window->Perference->Java-> ...