bzoj 3677: [Apio2014]连珠线【树形dp】
参考:http://www.cnblogs.com/mmlz/p/4456547.html
枚举根,然后做树形dp,设f[i][1]为i是蓝线中点(蓝线一定是父子孙三代),f[i][0]为不是,转移很好想,但是这是n方的
考虑优化换根,记录最小值和最大值就能换根了
#include<iostream>
#include<cstdio>
#include<vector>
using namespace std;
const int N=1000005,inf=1e9;
int n,h[N],cnt,f[N][2],fa[N],va[N],ans;
vector<int>s[N],g[N][2],b[N];
struct qwe
{
int ne,to,va;
}e[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
inline void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
inline void ud(int x)
{
if(x>ans)
ans=x;
}
void dfs(int u)
{
f[u][1]=-inf,f[u][0]=0;
int fb=-inf,sb=-inf;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fa[u])
{
va[e[i].to]=e[i].va;
fa[e[i].to]=u;
dfs(e[i].to);
f[u][0]+=max(f[e[i].to][0],f[e[i].to][1]+e[i].va);
int now=-max(f[e[i].to][0],f[e[i].to][1]+e[i].va)+f[e[i].to][0]+e[i].va;
if(now>fb)
sb=fb,fb=now;
else if(now>sb)
sb=now;
}
f[u][1]=f[u][0]+fb;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fa[u])
{
int tmp=f[u][0]-max(f[e[i].to][0],f[e[i].to][1]+e[i].va),key;
s[u].push_back(e[i].to);
g[u][0].push_back(tmp);
if(-max(f[e[i].to][0],f[e[i].to][1]+e[i].va)+f[e[i].to][0]+e[i].va==fb)
key=sb;
else
key=fb;
g[u][1].push_back(tmp+key);
b[u].push_back(key);
}
}
void dp(int u)
{
for(int i=0,len=s[u].size();i<len;i++)
{
f[u][0]=g[u][0][i];
f[u][1]=g[u][1][i];
if(fa[u])
{
f[u][0]+=max(f[fa[u]][0],f[fa[u]][1]+va[u]);
f[u][1]=f[u][0];
int key=max(b[u][i],-max(f[fa[u]][0],f[fa[u]][1]+va[u])+f[fa[u]][0]+va[u] );
f[u][1]+=key;
}
ud(f[s[u][i]][0]+max(f[u][0],f[u][1]+va[s[u][i]]));
dp(s[u][i]);
}
}
int main()
{
n=read();
for(int i=1;i<n;i++)
{
int x=read(),y=read(),z=read();
add(x,y,z),add(y,x,z);
}
dfs(1);
ud(f[1][0]);
dp(1);
printf("%d\n",ans);
return 0;
}
bzoj 3677: [Apio2014]连珠线【树形dp】的更多相关文章
- [Bzoj3677][Apio2014]连珠线(树形dp)
3677: [Apio2014]连珠线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 434 Solved: 270[Submit][Status] ...
- 【BZOJ3677】[Apio2014]连珠线 换根DP
[BZOJ3677][Apio2014]连珠线 Description 在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”.不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色 ...
- 题解 [APIO2014]连珠线
题解 [APIO2014]连珠线 题面 解析 首先这连成的是一棵树啊. 并且\(yy\)一下,如果钦定一个根, 那么这上面的蓝线都是爸爸->儿子->孙子这样的,因为像下图这样的构造不出来: ...
- [BZOJ 4033] [HAOI2015] T1 【树形DP】
题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...
- 【LG3647】[APIO2014]连珠线
[LG3647][APIO2014]连珠线 题面 洛谷 题解 首先考虑一下蓝线连起来的情况,一定是儿子-父亲-另一个儿子或者是儿子-父亲-父亲的父亲. 而因为一开始只有一个点在当前局面上,将一条红边变 ...
- [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...
- 洛谷 P3647 [APIO2014]连珠线(换根 dp)
题面传送门 题意: 桌子上有 \(1\) 个珠子,你要进行 \(n-1\) 次操作,每次操作有以下两种类型: 拿出一个新珠子,并选择一个桌子上的珠子,在它们之间连一条红线 选择两个由红线相连的珠子 \ ...
- bzoj3677: [Apio2014]连珠线
Description 在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”.不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色和蓝色.游戏 开始时,只有1个珠子,而接下来新的 ...
- APIO2014 连珠线
题目链接:戳我 换根DP 由于蒟蒻不会做这个题,所以参考了大佬. 本来想的是有三种情况,一种是该节点不作为两个蓝线的中点(我们称这种不是关键节点),一种是该节点作为关键点.连两个子节点,一种是作为关键 ...
随机推荐
- iOS-bug·Failed to connect to github-production-release-asset-2e65be.s3.amazonaws.com port 443: Operation time out
在首次运行 react naticve 项目时, 遇到了如下的问题: Failed to connect to github-production-release-asset-2e65be.s3.am ...
- NoSQL之Memcached
一.Memcached概念 Memcached是NoSQL产品之中的一个,是一个暂时性键值存储NoSQL数据库,过去被大量使用在互联网站点中,作为应用和数据库之间的缓存层,大大提高查询和訪问速度. M ...
- powerdesign导出SQL时自己主动生成凝视
1.使用脚本的方式 在里面执行 Option Explicit ValidationMode = True InteractiveMode = im_Batch Dim mdl ' ...
- poj 1426 Find The Multiple ( BFS+同余模定理)
Find The Multiple Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 18390 Accepted: 744 ...
- js实现的美女瀑布流效果代码
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/stri ...
- Atitit. 软件GUIbutton与仪表盘--webserver区--获取apache配置文件路径 linux and apache的启动、停止、重新启动
Atitit. 软件GUIbutton与仪表盘--webserver区--获取apache配置文件路径 linux and apache的启动.停止.重新启动 能够通过"netstat ...
- LoaderManager使用具体解释(四)---实例:AppListLoader
实例:AppListLoader 这篇文章将是我的第四篇,也就是最后一篇该系列的文章.请在评论里面告诉我他们是否实用.前面几篇文章的链接例如以下: 一:Loaders之前世界 二:了解LoaderMa ...
- VC2010 利用 def 文件生成 dll 文件的方法
近期有个需求,要生成一个dll 文件.文件里的函数都是採用 stdcall 函数调用约定,可是不希望函数名被修饰(add 被修饰成 add@8). 这时就要用def 文件了. 比方我有以下两个函数: ...
- c/c++内存使用原则
1 no malloc no free 2 no new no delete 如果对象不是new出来的,那么这个对象在生命周期结束后会自动调用析构函数自己释放自己的内存,不需要delete. 但是如果 ...
- How can I pass data from Flask to JavaScript in a template?
https://stackoverflow.com/questions/11178426/how-can-i-pass-data-from-flask-to-javascript-in-a-templ ...