【强连通分量缩点】poj 1236 Network of Schools
【题意】
- 给定一个有向图,求:
- (1)至少要选几个顶点,才能做到从这些顶点出发,可以到达全部顶点
- (2)至少要加多少条边,才能使得从任何一个顶点出发,都能到达全部顶点
【思路】
- (1)强连通分量缩点后形成一个有向无环图,只要选择入度为0的顶点,其他顶点都可以被到达
- (2)等价于一个有向无环图加最少加多少条边能够变成一个强连通图,取出度为0的点的个数和入度为0的点的个数的max,因为出度为0的点要加一条出边,入度为0的点要加一条入边
- (2)特判特殊情况:强连通分量只有一个,这时虽然入度为0和出度为0的点都是一个,但不需要加边
【AC】
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
int n;
const int maxm=;
const int maxn=1e2+;
struct edge
{
int to;
int nxt;
}e[maxm];
int head[maxn],tot;
int dfn[maxn],low[maxn],id;
int S[maxn],top;
int num,belong[maxn];
bool vis[maxn];
bool in[maxn];
bool out[maxn];
void init()
{
memset(head,-,sizeof(head));
tot=;
id=;
top=;
num=;
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(S,,sizeof(S));
memset(vis,false,sizeof(vis));
memset(belong,,sizeof(belong));
memset(in,false,sizeof(in));
memset(out,false,sizeof(out));
}
void addedge(int u,int v)
{
e[tot].to=v;
e[tot].nxt=head[u];
head[u]=tot++;
}
void tarjan(int u)
{
dfn[u]=low[u]=++id;
S[++top]=u;
vis[u]=true;
for(int i=head[u];i!=-;i=e[i].nxt)
{
int v=e[i].to;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(vis[v]) low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
num++;
while()
{
belong[S[top]]=num;
vis[S[top]]=false;
if(S[top--]==u) break;
}
} } int main()
{
while(~scanf("%d",&n))
{
init();
for(int i=;i<=n;i++)
{
int x;
while()
{
scanf("%d",&x);
if(x==) break;
addedge(i,x);
}
}
for(int i=;i<=n;i++)
{
if(!dfn[i]) tarjan(i);
}
for(int u=;u<=n;u++)
{
for(int i=head[u];i!=-;i=e[i].nxt)
{
int v=e[i].to;
if(belong[u]==belong[v]) continue;
in[belong[v]]=true;
out[belong[u]]=true;
}
}
int ans1=;
int ans2=;
for(int i=;i<=num;i++)
{
if(!in[i]) ans1++;
if(!out[i]) ans2++;
}
int ans=max(ans1,ans2);
if(num==) ans=;
printf("%d\n%d\n",ans1,ans);
}
return ;
}
【大佬博客】
www.cnblogs.com/kuangbin/archive/2011/08/07/2130277.html
解题思路:
1. 求出所有强连通分量
2. 每个强连通分量缩成一点,则形成一个有向无环图DAG。
3. DAG上面有多少个入度为0的顶点,问题1的答案就是多少
在DAG上要加几条边,才能使得DAG变成强连通的,问题2的答案就是多少
加边的方法:
要为每个入度为0的点添加入边,为每个出度为0的点添加出边
假定有 n 个入度为0的点,m个出度为0的点,如何加边?
把所有入度为0的点编号 0,1,2,3,4 ....N -1
每次为一个编号为i的入度0点可达的出度0点,添加一条出边,连到编号为(i+1)%N 的那个出度0点,
这需要加n条边
若 m <= n,则
加了这n条边后,已经没有入度0点,则问题解决,一共加了n条边
若 m > n,则还有m-n个入度0点,则从这些点以外任取一点,和这些点都连上边,即可,这还需加m-n条边。
所以,max(m,n)就是第二个问题的解
此外:当只有一个强连通分支的时候,就是缩点后只有一个点,虽然入度出度为0的都有一个,但是实际上不需要增加清单的项了,所以答案是1,0;
【强连通分量缩点】poj 1236 Network of Schools的更多相关文章
- POJ 1236 Network of Schools(强连通 Tarjan+缩点)
POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意: 给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...
- POJ 1236 Network of Schools(强连通分量)
POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ...
- Poj 1236 Network of Schools (Tarjan)
题目链接: Poj 1236 Network of Schools 题目描述: 有n个学校,学校之间有一些单向的用来发射无线电的线路,当一个学校得到网络可以通过线路向其他学校传输网络,1:至少分配几个 ...
- poj 1236 Network of Schools(又是强连通分量+缩点)
http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Su ...
- POJ 1236 Network Of Schools (强连通分量缩点求出度为0的和入度为0的分量个数)
Network of Schools A number of schools are connected to a computer network. Agreements have been dev ...
- POJ 1236——Network of Schools——————【加边形成强连通图】
Network of Schools Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u ...
- poj 1236 Network of Schools(连通图入度,出度为0)
http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Su ...
- [tarjan] poj 1236 Network of Schools
主题链接: http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS Memory Limit: 10000K To ...
- POJ 1236 Network of Schools(tarjan)题解
题意:一个有向图.第一问:最少给几个点信息能让所有点都收到信息.第二问:最少加几个边能实现在任意点放信息就能传遍所有点 思路:把所有强连通分量缩成一点,然后判断各个点的入度和出度 tarjan算法:问 ...
随机推荐
- Mysql 主备配置
来自:http://blog.csdn.net/u013256816/article/details/52536283 1. 了解主备配置过程原理. http://blog.csdn.net/u013 ...
- ABC3D创客项目:国旗
国旗是一个国家的象征,也是一个民族的骄傲,国旗带给人们的不仅是荣耀,更多的是爱国的情结.看一场天安门的升旗仪式一度成为广大游客去到北京的必有项目,看国旗仪仗队将五星红旗与太阳同时升起,象征着我国充满活 ...
- Codeforces Round #318 (Div. 2) D Bear and Blocks (数学)
不难发现在一次操作以后,hi=min(hi-1,hi-1,hi+1),迭代这个式子得到k次操作以后hi=min(hi-j-(k-j),hi-k,hi+j-(k-j)),j = 1,2,3... 当k ...
- postcss.config.js配置文件的配置方法
module.exports = { plugins: { 'autoprefixer': {}, } }
- Leetcode 9 回文数Palindrome Number
判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: 从左向 ...
- windows使用文件服务器搭建Git服务器
背景: 1.windows下搭建git服务器. 2.git服务器搭建在局域网文件共享区中. 3.没有复杂的权限控制,文件共享区都有访问权限. 步骤: 1.文件共享区中创建git远程仓库. 2.本地克隆 ...
- LeetCode 三角形最小路径和
给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 自顶向下的最小路径和为 11 ...
- GIMP模板选区操作
选择方法有很多种,这里我就新学的方法记录一下,主要是通过小剪刀和Toggle Quick Mask 相结合的运用. 选择Scissors Select Tool工具 设置基本的属性:Antialisa ...
- 三段式fsm
1.状态转移的always中CS,同步ouput的always中NS. 2.3段fsm vs 2段fsm:output逻辑是组合逻辑和同步时序逻辑(消除里不稳的和毛刺). 3.3段fsm vs 1段f ...
- Django ORM (一) 创建数据库和模型常用的字段类型参数及Field 重要参数介绍
创建一个 Django 项目及应用 django-admin startproject orm cd orm python manage.py startapp app01 在 models.py 上 ...