bzoj 2257[Jsoi2009]瓶子和燃料 数论/裴蜀定理
题目
Description
jyy就一直想着尽快回地球,可惜他飞船的燃料不够了。
有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换。jyy
的飞船上共有 N个瓶子(1<=N<=1000) ,经过协商,火星人只要其中的K 个 。 jyy
将 K个瓶子交给火星人之后,火星人用它们装一些燃料给 jyy。所有的瓶子都没有刻度,只
在瓶口标注了容量,第i个瓶子的容量为Vi(Vi 为整数,并且满足1<=Vi<=1000000000 ) 。
火星人比较吝啬,他们并不会把所有的瓶子都装满燃料。他们拿到瓶子后,会跑到燃料
库里鼓捣一通,弄出一小点燃料来交差。jyy当然知道他们会来这一手,于是事先了解了火
星人鼓捣的具体内容。火星人在燃料库里只会做如下的3种操作:1、将某个瓶子装满燃料;
2、将某个瓶子中的燃料全部倒回燃料库;3、将燃料从瓶子a倒向瓶子b,直到瓶子b满
或者瓶子a空。燃料倾倒过程中的损耗可以忽略。火星人拿出的燃料,当然是这些操作能
得到的最小正体积。
jyy知道,对于不同的瓶子组合,火星人可能会被迫给出不同体积的燃料。jyy希望找
到最优的瓶子组合,使得火星人给出尽量多的燃料。
Input
第1行:2个整数N,K,
第2..N 行:每行1个整数,第i+1 行的整数为Vi
Output
仅1行,一个整数,表示火星人给出燃料的最大值。
Sample Input
3
4
4
Sample Output
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<vector>
using namespace std;
int n,k,ans=,step;
int cnt[]; bool cmp(int a,int b)
{
return a>b;
} void apart(int x)
{
for(int i=;i*i<=x;i++)
{
if(x%i==)
{
cnt[++step]=i;
if(x/i!=i) cnt[++step]=x/i;
}
}
}
int main()
{
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)
{
int x=;
scanf("%d",&x);
apart(x);
}
sort(cnt+,cnt+step+,cmp);
for(int i=;i<=step;i++)
{
if(cnt[i]==cnt[i-])
{
ans++;
if(ans==k)
{
printf("%d",cnt[i]);
return ;
}
}
else ans=;
} return ;
}
在数论中,裴蜀定理是一个关于最大公约数(或最大公约式)的定理。裴蜀定理得名于法国数学家艾蒂安·裴蜀,说明了对任何整数a、b和它们的最大公约数d,关于未知数x和y的线性丢番图方程(称为裴蜀等式):
ax + by = m
有解当且仅当m是d的倍数。裴蜀等式有解时必然有无穷多个整数解,每组解x、y都称为裴蜀数,可用辗转相除法求得。
例如,12和42的最大公因子是6,则方程12x + 42y = 6有解。事实上有(-3)×12 + 1×42 = 6及4×12 + (-1)×42 = 6。
特别来说,方程 ax + by = 1 有解当且仅当整数a和b互素。
裴蜀等式也可以用来给最大公约数定义:d其实就是最小的可以写成ax + by形式的正整数。这个定义的本质是整环中“理想”的概念。因此对于多项式整环也有相应的裴蜀定理。
bzoj 2257[Jsoi2009]瓶子和燃料 数论/裴蜀定理的更多相关文章
- bzoj 2257: [Jsoi2009]瓶子和燃料【裴蜀定理+gcd】
裴蜀定理:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立. 所以最后能得到的最小燃料书就是gcd,所以直 ...
- 【bzoj2257】[Jsoi2009]瓶子和燃料 扩展裴蜀定理+STL-map
题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.从中选出 $k$ 个瓶子,使得能够通过这 $k$ 个瓶子凑出 ...
- BZOJ2257 [Jsoi2009]瓶子和燃料 【裴蜀定理】
题目链接 BZOJ2257 题解 由裴蜀定理我们知道,若干的瓶子如此倾倒最小能凑出的是其\(gcd\) 现在我们需要求出\(n\)个瓶子中选出\(K\)个使\(gcd\)最大 每个数求出因数排序即可 ...
- [BZOJ 2257][JSOI2009]瓶子和燃料 题解(GCD)
[BZOJ 2257][JSOI2009]瓶子和燃料 Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子 ...
- 洛谷 P4571 BZOJ 2257 [JSOI2009]瓶子和燃料
bzoj题目链接 上面hint那里是选择第2个瓶子和第3个瓶子 Time limit 10000 ms Memory limit 131072 kB OS Linux Source Jsoi2009 ...
- BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】
2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1326 Solved: 815[Submit][Stat ...
- BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理
2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...
- BZOJ-2257:瓶子和燃料(裴蜀定理)
jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy的飞船上共有 N个瓶子(1<=N<=1000) ,经过 ...
- bzoj 2257: [Jsoi2009]瓶子和燃料
#include<cstdio> #include<iostream> #include<algorithm> #include<cmath> usin ...
随机推荐
- 洛谷 P3879 [TJOI2010]阅读理解
P3879 [TJOI2010]阅读理解 题目描述 英语老师留了N篇阅读理解作业,但是每篇英文短文都有很多生词需要查字典,为了节约时间,现在要做个统计,算一算某些生词都在哪几篇短文中出现过. 输入输出 ...
- DotProject首页、文档和下载 - 项目管理工具 - 开源中国社区
DotProject首页.文档和下载 - 项目管理工具 - 开源中国社区
- VB程序逆向反汇编常见的函数(修改版)
VB程序逆向常用的函数 1) 数据类型转换: a) __vbaI2Str 将一个字符串转为8 位(1个字节)的数值形式(范围在 0 至 255 之间) 或2 个字节的数值形式(范围在 -32,7 ...
- 运行mapreduce - java.lang.InterruptedException
错误日志: 2018-11-19 05:23:51,686 WARN [main] util.NativeCodeLoader (NativeCodeLoader.java:<clinit> ...
- C#中list比数组效率低多少
对于List,即长度不确定的数组而言,十万笔数据*12倍,就是120万笔数据,只需要93ms左右 换成了二维数组,效果也是差不多,78ms,可见list的效率只比double差一点点
- git 删除目录
1. 查看本地已经被删除的文件 2. 删除 目录以及目录下的文件 [root@test01 h2_mopub_replace]# git rm ../test_code_driver -r 3. [r ...
- [转] logback 常用配置详解(序)logback 简介
转载文章:原文出处:http://aub.iteye.com/blog/1101222 logback 简介 Ceki Gülcü在Java日志领域世界知名.他创造了Log4J ,这个最早的Java日 ...
- [LeetCode]Two Sum 【Vector全局指针的使用】
无序数组返回两个元素和为给定值的下标. tricks:无序.返回下标增序.返回的是原始数组的下标. vector<int>*pa; bool cmp(int x,int y){ retur ...
- MVC 下 JsonResult 的使用方法(JsonRequestBehavior.AllowGet)<转>
MVC 默认 Request 方式为 Post. actionpublic JsonResult GetPersonInfo(){var person = new{Name = "张三&qu ...
- Node.js 101(2): Promise and async
--原文地址:http://blog.chrisyip.im/nodejs-101-package-promise-and-async 先回想一下 Sagase 的项目结构: lib/ cli.js ...