题目大意:

  有一个数n,满足lcm(i,j)==n并且i<=j时,(i,j)有多少种情况?

解题思路:

  n可以表示为:n=p1^x1*p2^x1.....pk^xk。

  假设lcm(a,b) == n;

  a = p1^c1 * p2^c2 ..... pk^ck。

  b = p1^e1 * p2^e2 .... pk^ek。

  xi = max(ci, ei)。

  对于有序数对(a,b),有唯一分解定理知,每一个素因数的幂都决定了一个独一无二的数。

  求(a,b)的种数就可以转化为求(ci,ei)的种数:num = (2*x1+1)*(2*x2+1).....(2*xk+1)。

  因为是有序数对,最后在除于二。

代码:

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std; #define maxn 10000050
char a[maxn];
int b[];
void prime ();//素数筛选
int main ()
{
int t, l = ;
long long n, sum;
prime ();
scanf ("%d", &t);
while (t --)
{
scanf ("%lld", &n);
int i = ;
sum = ;
while (n > && i < )//由于内存有限,筛选的素数有限,所以i大于所筛选出的素数时也应该退出
{
if (n % b[i] == )
{
int j = ;
while (n % b[i] == )
{
n /= b[i];
j ++;
}
sum *= ( * j + );
}
i++;
}
if (n != )//因为筛选出来的素数有限,n!=1的时候,肯定有一个素数并且这个素数只有一个
sum *= ;
printf ("Case %d: %lld\n", l++, (sum+)/);
}
return ;
} void prime ()
{
long long i, j, k;
for (k=,i=; i<maxn; i++)
{
if (!a[i])
{
b[k ++] = i;
for (j=i*i; j<maxn; j+=i)
a[j] = ;
}
}
}

LightOj 1236 Pairs Forming LCM (素数筛选&&唯一分解定理)的更多相关文章

  1. LightOJ 1236 Pairs Forming LCM (LCM 唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1236 Pairs Forming LCM Time Limit:2000MS     Memor ...

  2. LightOJ 1236 - Pairs Forming LCM(素因子分解)

    B - Pairs Forming LCM Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  3. LightOJ - 1236 - Pairs Forming LCM(唯一分解定理)

    链接: https://vjudge.net/problem/LightOJ-1236 题意: Find the result of the following code: long long pai ...

  4. LightOj 1236 - Pairs Forming LCM (分解素因子,LCM )

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1236 题意:给你一个数n,求有多少对(i,  j)满足 LCM(i, j) = n, ...

  5. LightOJ 1236 Pairs Forming LCM 合数分解

    题意:求所有小于等于n的,x,y&&lcm(x,y)==n的个数 分析:因为n是最小公倍数,所以x,y都是n的因子,而且满足这样的因子必须保证互质,由于n=1e14,所以最多大概在2^ ...

  6. LightOJ 1236 Pairs Forming LCM【整数分解】

    题目链接: http://lightoj.com/login_main.php?url=volume_showproblem.php?problem=1236 题意: 找与n公倍数为n的个数. 分析: ...

  7. 1236 - Pairs Forming LCM

    1236 - Pairs Forming LCM   Find the result of the following code: long long pairsFormLCM( int n ) {  ...

  8. Light oj 1236 - Pairs Forming LCM (约数的状压思想)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1236 题意很好懂,就是让你求lcm(i , j)的i与j的对数. 可以先预处理1e7以 ...

  9. 1236 - Pairs Forming LCM -- LightOj1236 (LCM)

    http://lightoj.com/volume_showproblem.php?problem=1236 题目大意: 给你一个数n,让你求1到n之间的数(a,b && a<= ...

随机推荐

  1. Failed to execute 'toDataURL' on 'HTMLCanvasElement,在canvas.toDataURL()执行时候报错解决方案

    添加跨域条件   crossorigin="anonymous" [Redirect at origin 'http://xxx.xx.com' has been blocked ...

  2. 进程(WINAPI),遍历并查找树状的进程信息,实现控制系统进程

    #include <TlHelp32.h> //检索系统全部进程 void showall() { PROCESSENTRY32 pe32 = {0}; pe32.dwSize = siz ...

  3. 系统安全攻防战:DLL注入技术详解

    DLL注入是一种允许攻击者在另一个进程的地址空间的上下文中运行任意代码的技术.攻击者使用DLL注入的过程中如果被赋予过多的运行特权,那么攻击者就很有可能会在DLL文件中嵌入自己的恶意攻击代码以获取更高 ...

  4. ExtJS学习-----------Ext.Object,ExtJS对javascript中的Object的扩展

    关于ExtJS对javascript中的Object的扩展.能够參考其帮助文档,文档下载地址:http://download.csdn.net/detail/z1137730824/7748893 以 ...

  5. Cocostudio 1.4 实现的DemoShop

    开发环境是CocoStudio 1.4 + Cocos2dx 2.2  把项目文件放到Cocos2dx下的projects文件夹下就可以执行了 压缩包里面包括了 源码 和资源文件 执行效果: 初始化界 ...

  6. hdu 4950 Monster(数学题,多校8)

    题目链接:pid=4950http://acm.hdu.edu.cn/showproblem.php?pid=4950">http://acm.hdu.edu.cn/showprobl ...

  7. vue Iframe

    1.Iframe.vue <!-- Iframe --> <template> <div> <!-- 标题栏 --> <mt-header tit ...

  8. Android Client and PHP Server

    1 FEApplication https://github.com/eltld/FEApplication https://github.com/eltld/FE-web https://githu ...

  9. UIButton的图片和文字相对位置调整

    通常.假设直接设置UIButton的图片和文字,默认的两者相对位置可能不是我们想要的,那么须要进行调整. 须要用到的函数例如以下: UIEdgeInsetsMake(CGFloat top, CGFl ...

  10. 【iOS系列】- iOS吸附效果的实现 之 UICollectionView的使用全解

    [iOS系列]- iOS吸附效果的实现 之 UICollectionView的使用全解 UICollectionView可以做很多的布局,在iOS开发中较为重要,所以这里就以实例来讲解UICollec ...