【bzoj4898】商旅
Solution
这题的话。。首先答案的形式应该是\(01\)分数规划了
然后比较关键的一步在于,我们需要简化一下交易的过程
具体一点就是,我们将中间经过的不交易的点和路径全部”合并“起来,只考虑买入物品和卖出物品的两个点
首先看一下这两个点之间的路程应该怎么走
因为路程长度是做分母的那个,所以我们肯定希望在到达同一个点的情况下走最短路,那所以这两个点一旦确定下来了,路程也就确定下来了
两两之间最短路的求解因为\(N\)比较小所以可以直接用floyd解决
然后接下来就是交易的物品我们要选择哪一个
很明显是选盈利最大的那个,大力贪心就好了ovo
所以总的来说,如果确定了进行买卖的两个点,我们走的路程一定是最短路,买卖的一定是这两个点能够交易的所有物品中,盈利最大的那个
记两点间最短路为\(w_{i,j}\),最优的盈利为\(val_{i,j}\),那么套用分数规划的套路(Portal -->【learning】),我们需要快速求出一个环的:
\]
与\(0\)的大小关系
那么这个其实就直接用spfa判断是否有正环就好了
自己跳进去的坑:
额。。注意到这里题目说的是**利润/路径长度(向下取整) **的最大值。。
所以!在二分答案的时候!\(l\)和\(r\)和\(mid\)用int就好了!! QWQ
以及\(K\)的范围是\(1000\)而不是\(100\)。。。
代码大概长这个样子
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=110,M=9910,inf=2147483647;
const double eps=1e-8;
struct xxx{
int y,x,nxt;
double w;
}a[N*N*2];
struct Data{
int y,x;
int w;
}rec[N*N*2];
queue<int> q;
int h[N],cnt[N],buy[N][1010],sell[N][1010],w[N][N];
double val[N];
bool vis[N];
int n,m,K,tot,rec_cnt;
void add(int x,int y,double val);
bool spfa();
void build(double mid);
bool check(double mid);
void prework();
void floyd();
void solve();
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d%d%d",&n,&m,&K);
for (int i=1;i<=n;++i)
for (int j=1;j<=K;++j)
scanf("%d%d",&buy[i][j],&sell[i][j]);
int x,y,w1;
rec_cnt=0;
for (int i=1;i<=n;++i)
for (int j=1;j<=n;++j)
w[i][j]=inf;
for (int i=1;i<=m;++i){
scanf("%d%d%d",&x,&y,&w1);
rec[++rec_cnt].x=x; rec[rec_cnt].y=y; rec[rec_cnt].w=0;
w[x][y]=min(w[x][y],w1);
}
prework();
solve();
}
void add(int x,int y,double val){
//printf("%d %d %.3lf\n",x,y,val);
a[++tot].y=y; a[tot].nxt=h[x]; h[x]=tot; a[tot].w=val;
}
bool spfa(){
while (!q.empty()) q.pop();
int u,v;
for (int i=1;i<=n;++i) vis[i]=true,q.push(i),cnt[i]=0,val[i]=0;
while (!q.empty()){
v=q.front(); q.pop();
for (int i=h[v];i!=-1;i=a[i].nxt){
u=a[i].y;
if (val[u]<=val[v]+a[i].w){
val[u]=val[v]+a[i].w;
if (!vis[u]){
q.push(u),vis[u]=true,++cnt[u];
if (cnt[u]>n) return true;
}
}
}
vis[v]=false;
}
return false;
}
bool check(double mid){
build(mid);
return spfa();
}
void build(double mid){
tot=0;
for (int i=1;i<=n;++i) h[i]=-1;
for (int i=1;i<=rec_cnt;++i)
add(rec[i].x,rec[i].y,1.0*rec[i].w-mid*w[rec[i].x][rec[i].y]);
}
void floyd(){
for (int k=1;k<=n;++k)
for (int i=1;i<=n;++i){
if (w[i][k]==inf) continue;
for (int j=1;j<=n;++j)
if (w[k][j]!=inf)
w[i][j]=min(w[i][j],w[i][k]+w[k][j]);
}
}
void prework(){
floyd();
int mx,tmp;
for (int i=1;i<=n;++i)
for (int j=1;j<=n;++j){
if (w[i][j]==inf) continue;
mx=0;
for (int k=1;k<=K;++k)
if (buy[i][k]!=-1&&sell[j][k]!=-1){
if (sell[j][k]-buy[i][k]>mx) tmp=k;
mx=max(mx,sell[j][k]-buy[i][k]);
}
if (mx)
rec[++rec_cnt].x=i,rec[rec_cnt].y=j,rec[rec_cnt].w=mx;
}
}
void solve(){
int l=0,r=1e9,mid,ans;
while (l<=r){
mid=(l+r)>>1;
if (check(mid)) ans=mid,l=mid+1;
else r=mid-1;
}
printf("%d\n",ans);
}
【bzoj4898】商旅的更多相关文章
- luogu3778/bzoj4898 商旅 (floyd+分数规划+spfa)
首先floyd求出来每两点间的最短距离,然后再求出来从某点买再到某点卖的最大收益 问题就变成了找到一个和的比值最大的环 所以做分数规划,二分出来那个答案r,把边权变成w[i]-r*l[i],再做spf ...
- 【learning】01分数规划
问题描述 首先分数规划是一类决策性问题 一般形式是: \[ \lambda=\frac{f(x)}{g(x)} \] 其中\(f(x)\)和\(g(x)\)都是连续的实值函数,然后要求\(\lambd ...
- [BZOJ4898] [Apio2017]商旅
[BZOJ4898] [Apio2017]商旅 传送门 试题分析 考虑两个点之间的路径,显然如果交易的话肯定选\(S_{t,i}-B_{s,i}\)最大的. 那么我们可以先用\(Cost\)把两个点的 ...
- 【BZOJ4898】[Apio2017]商旅 分数规划+SPFA
[BZOJ4898][Apio2017]商旅 Description 在广阔的澳大利亚内陆地区长途跋涉后,你孤身一人带着一个背包来到了科巴.你被这个城市发达而美丽的市场所深深吸引,决定定居于此,做一个 ...
- BZOJ4898/5367 Apio2017商旅(分数规划+floyd)
如果要在某点买入某物品并在另一点卖出,肯定是走其间最短路径.于是预处理任意两点间的收益和最短路径,连完边二分答案判负环即可,可以全程floyd.注意inf大小. #include<iostrea ...
- BZOJ4898 & BZOJ5367 & 洛谷3778:[APIO2017]商旅——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4898 https://www.lydsy.com/JudgeOnline/problem.php? ...
- 【bzoj4898】[Apio2017]商旅 Floyd+分数规划+Spfa
题目描述 有n个点.m条边.和k种商品.第$i$个点可以以$B_{ij}$的价格买入商品$j$,并以$S_{ij}$的价格卖出.任何时候只能持有一个商品.求一个环,使得初始不携带商品时以某种交易方式走 ...
- bzoj4898 & loj2308 [Apio2017]商旅 最短路+01分数规划
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4898 https://loj.ac/problem/2308 题解 发现我们可以把整个环路分成 ...
- 「APIO2017」商旅
「APIO2017」商旅 题目描述 在广阔的澳大利亚内陆地区长途跋涉后,你孤身一人带着一个背包来到了科巴.你被这个城市发达而美丽的市场所深深吸引,决定定居于此,做一个商人.科巴有 \(N\) 个集市, ...
随机推荐
- php实现快速排序和冒泡排序
快速排序 实现思路:把第一个元素作为标记,依次判断后续的值,如果小于它则放在左边,如果大于它则放右边,同理把左右两部分看成一个整体一直递归,最后再数组拼接起来 它的最优时间复杂度为O(nlogn)[以 ...
- 04-容器 What, Why, How
What - 什么是容器? 容器是一种轻量级.可移植.自包含的软件打包技术,使应用程序可以在几乎任何地方以相同的方式运行.开发人员在自己笔记本上创建并测试好的容器,无需任何修改就能够在生产系统的虚拟机 ...
- 003 -- Dubbo简单介绍
1:Dubbo的基本概念 dubbo是阿里巴巴SOA服务治理 方案的核心框架,每天为20000+个服务次的数据量访问支持.dubbo是一个分布式的服务框架,致力于提供高性能和透明化的RPC远程服务调用 ...
- centos7.2部署docker-17.06.0-ce的bug:Error response from daemon: oci runtime error: container_linux.go:262: starting container process caused "process_linux.go:339: container init caused \"\"".
现象: 操作系统:centos 7.2 kernel 3.10.0-327.el7.x86_64 mesos:1.3.0 docker:docker-17.06.0-ce 在做mesos验证时,通过m ...
- visual studio 2010 和 VSS(Visual SourceSafe)的连接使用
visual studio 2010 和 VSS(Visual SourceSafe)的连接使用 1. 在visual vstudio中选择使用VSS插件: 2. 使用VSS进行源码管理: ...
- 1019psp
1.本周psp: 2.本周进度条: 3.累计进度图(折线图): 4.psp饼状图:
- 网页调用vlc并播放网络视频
环境:windows/android/ios windows端保存以下内容为reg文件并运行 Windows Registry Editor Version 5.00 [HKEY_CLASSES_RO ...
- 福大软工1816:Beta总结
第三视角Beta答辩总结 博客链接以及团队信息 组长博客链接 成员信息(按拼音排序) 姓名 学号 备注 张扬 031602345 组长 陈加伟 031602204 郭俊彦 031602213 洪泽波 ...
- HDU 5187 zhx's contest 快速幂,快速加
题目链接: hdu: http://acm.hdu.edu.cn/showproblem.php?pid=5187 bc(中文): http://bestcoder.hdu.edu.cn/contes ...
- 运维学习笔记(七)之T02-01计算机网络 、 数制 、 网络通信参考模型
计算机网络 计算机网络概述 什么是计算机网络 硬件方面:通过线缆将网络设备和计算机连接起来 软件方面:操作系统.应用软件.应用程序通过通信线路互连 实现资源共享.信息传递 功能 数据通信/资源共享/增 ...