题目

似乎很久没写题解了...

这题是校里胡策的时候的题,比赛因为评测机有点慢+自己代码常数大没快读...被卡t了,但是bzoj上还是A了的...,因为bzoj时限比较宽可以不卡常。

题解:

首先可以发现答案与操作顺序是无关的,也就是说,可以钦定答案就是x次操作,然后让先手的x次先全换了,然后再考虑我要怎么换,才能在最少次数内换成升序。

于是就可以直接枚举答案x,然后判一下x是否可行。

考虑如何判断,问题会变成,给定一个a序列,每次可以交换两个数,问最少交换多少次可以换成升序,也就是变成a[i]=i。

这是一个经典问题,考虑 i 必须换到 a[i] 的位置,于是就直接一直跳就好了,最后会变成若干个环。

一个环中如果有n个数,那么必须需要也只需要 n-1 次就可以换成 a[i]=i 的情况。

因此最少的交换次数就是每个环大小-1加起来,可以在 O(n) 的时间复杂度下完成判断。

那么枚举答案+判断答案是 O(n^2) 的,没得聊。

其实答案是可以二分的,满足二分性质。

证明:即证明如果答案为x可行,那么答案为x+1也必然可行,如果x可行,那么我花x次操作变成升序,然后第x+1次操作,先手怎么换,我就再换回去,序列依旧是升序的。

那么效率就是 O(nlogn) 的

虽然答案与顺序无关,但是操作方案是和顺序有关的。

转换一下思路,交换两个数,可以理解成两个位置交换,但是其实也可以理解成两个数字交换。

而位置和顺序有关,因为先手换完之后我本来想换的位置就会变了。

但是数字和顺序是没关系的,所以我记录一下我环中交换的那些数。

然后按题意模拟,每次维护一下now[i]表示 i 这个数现在的位置,于是就变得很简单了...

注意一下两个人都操作一次才算完,不能先手操作完后是升序的我就不操作了。

所以如果可以不操作的,要拿 0 0补满

 #include<cstdio>
#include<algorithm>
#define maxn 200050
using namespace std;
int n;
int v[maxn],now[maxn];
int a[maxn],b[maxn],x[maxn*],y[maxn*];
struct qnode{
int x,y;
}q[maxn*];
int check(int m){
for (int i=;i<n;i++)
b[i]=a[i],v[i]=;
for (int i=;i<=m;i++)
swap(b[x[i]],b[y[i]]);
int need=;
for (int i=;i<n;i++)
if (!v[i]){
int x=i;
while (!v[x]){
v[x]=;
if (!v[b[x]]) {
q[++need].x=b[x];
q[need].y=b[b[x]];
}
x=b[x];
}
}
return need;
}
int main(){
// freopen("game.in","r",stdin);
// freopen("game.out","w",stdout);
scanf("%d",&n);
for (int i=;i<n;i++)
scanf("%d",&a[i]),now[a[i]]=i;
int Q;
scanf("%d",&Q);
for (int i=;i<=Q;i++)
scanf("%d%d",&x[i],&y[i]);
int l=,r=Q;
while (l<=r){
int m=(l+r)>>;
if (check(m)>m) l=m+;else r=m-;
}
int need=check(l);
printf("%d\n",l);
for (int i=;i<=need;i++){
swap(a[x[i]],a[y[i]]);
now[a[x[i]]]=x[i];
now[a[y[i]]]=y[i];
printf("%d %d\n",now[q[i].x],now[q[i].y]);
swap(a[now[q[i].x]],a[now[q[i].y]]);
now[a[now[q[i].x]]]=now[q[i].x];
now[a[now[q[i].y]]]=now[q[i].y];
}
for (int i=need+;i<=l;i++)
printf("0 0\n");
return ;
}

4371

Bzoj 4371: [IOI2015]sorting排序 二分的更多相关文章

  1. bzoj 4552 [Tjoi2016&Heoi2016]排序 (二分答案 线段树)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4552 题意: 给你一个1-n的全排列,m次操作,操作由两种:1.将[l,r]升序排序,2 ...

  2. BZOJ 4552 [Tjoi2016&Heoi2016]排序 | 二分答案 线段树

    题目链接 题面 题目描述 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这 ...

  3. bzoj 4552 [Tjoi2016&Heoi2016]排序——二分答案

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4552 二分答案,把 >= mid 的设成1.< mid 的设成0,之后排序就变成 ...

  4. bzoj 4552: [Tjoi2016&Heoi2016]排序——二分+线段树

    Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题 ,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这 ...

  5. UVA.10474 Where is the Marble ( 排序 二分查找 )

    UVA.10474 Where is the Marble ( 排序 二分查找 ) 题意分析 大水题一道.排序好找到第一个目标数字的位置,返回其下标即可.暴力可过,强行写了一发BS,发现错误百出.应了 ...

  6. bzoj 4552: [Tjoi2016&Heoi2016]排序【二分+线段树】

    二分值mid,然后把>=mid的赋值为1,其他赋值为0,每次排序就是算出区间内01的个数,然后分别把0和1放到连续的一段内,这些都可以用线段树来维护 二分的判断条件是操作完之后q位置上是否为1 ...

  7. BZOJ 4552: [Tjoi2016&Heoi2016]排序 线段树 二分

    目录 此代码是个假代码,只能糊弄luogu,以后再改,路过大佬也可以帮一下辣 update 10.6 此代码是个假代码,只能糊弄luogu,以后再改,路过大佬也可以帮一下辣 /* //fang zhi ...

  8. BZOJ.4552.[HEOI2016/TJOI2016]排序(线段树合并/二分 线段树)

    题目链接 对于序列上每一段连续区间的数我们都可以动态开点建一棵值域线段树.初始时就是\(n\)棵. 对于每次操作,我们可以将\([l,r]\)的数分别从之前它所属的若干段区间中分离出来,合并. 对于升 ...

  9. BZOJ 4552 [Tjoi2016&Heoi2016]排序 ——线段树 二分答案

    听说是BC原题. 好题,二分答案变成01序列,就可以方便的用线段树维护了. 然后就是区间查询和覆盖了. #include <map> #include <cmath> #inc ...

随机推荐

  1. tomcat的添加及jar包和jQuery的加载

  2. CVE-2018-2628 weblogic WLS反序列化漏洞--RCE学习笔记

    weblogic WLS 反序列化漏洞学习 鸣谢 感谢POC和分析文档的作者-绿盟大佬=>liaoxinxi:感谢群内各位大佬及时传播了分析文档,我才有幸能看到. 漏洞简介 漏洞威胁:RCE-- ...

  3. FlashDevelop导入swc库

    项目不是AS项目,而是基于FlashIDE. 一 将SWC放入项目lib文件夹下 二 选择lib文件夹,右键,选择添加到库 三  FlashIDE中选择 文件-ActionScript设置 四 选择浏 ...

  4. iOS使用位置和方向服务(来自苹果apple官方)

    版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   本文章来自苹果官方文档,特此声明--------禚 Core Location框架为定位用户当前位置和方向(Headin ...

  5. This function has none of DETERMINISTIC, NO SQL

    错误信息: [Err] 1418 - This function has none of DETERMINISTIC, NO SQL, or READS SQL DATA in its declara ...

  6. vscode 代码保存时自动格式化成 ESLint 风格

    vscode 的默认的代码格式化 alt+shift+f (windows) 无法通过 eslint 的代码风格检查,,, 比如: 4个空格和2个空格(ESLint) 字符串用单引号(ESLint) ...

  7. MVC学习之简单的CRUD

    1.一点知识的总结 (1)MVC将展示页面和后台处理逻辑分离,不像ASPX中展示页面继承自后台的cs页面,MVC展示页面继承自ViewPage<dynamic>,最终继承自Page(使用A ...

  8. 小米范工具系列之六:小米范 web查找器2.x版本发布

    小米范web查找器是一款快速识别端口及服务的小工具. 此工具使用java 1.8以上版本运行. 下载地址:http://pan.baidu.com/s/1c1NDSVe  文件名web finder ...

  9. 【JEECG技术博文】JEECG表单配置-树形表单

    表单配置支持树型表单了,详细效果例如以下图:

  10. mysql 约束条件 not null与default

    not null与default 是否可空,null表示空,非字符串not null - 不可空null - 可空 use db4: 默认值,创建列时可以指定默认值,当插入数据时如果未主动设置,则自动 ...