洛谷P1352 没有上司的舞会——树形DP
第一次自己写树形DP的题,发个博客纪念`~
题目来源:P1352 没有上司的舞会
题目描述
某大学有N个职员,编号为1~N。他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri,但是呢,如果某个职员的上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了。所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数。
输入输出格式
输入格式:
第一行一个整数N。(1<=N<=6000)
接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)
接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。
最后一行输入0 0
输出格式:
输出最大的快乐指数。
输入输出样例
7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0
5
Solution:
这题乍一看,很容易联想到并查集,但仔细看题,提议中说的是儿子和直接父亲中只能选一个或者都不选,即上司的上司不是我的上司,如果用并查集则会忽略子树的中间状态。这时注意到,相邻的两个点只能取其中一个,而对于以某一节点为根节点的子树的最大值取决于它的子树的节点的子树,可能有点绕,但是不难发现,局部的状态是无后效性的,满足dp的条件。根据思路,便容易得出用f[i][0/1]表示以i为根节点的子树选i/不选i所能获得的最大价值,则状态转移方程便很明显了:
1、f[i][0]+=max(f[son][1],f[son][0]) //意思是对于节点i,如果i不选,则它的值取决于它的字节点最大值,且字节点可选可不选
2、f[i][1]+=max(f[son][0]) //意思是i节点如果选了,则它需要加上的是它字节点不选的最大值
这样题目就能迎刃而解了:
#include<bits/stdc++.h>
using namespace std;
int n,f[][],fa[],v[],h[],cnt; //f数组表示对于节点i,[i][0]表示不选,[i][1]表示选;fa数组存储i的父节点;v存储节点的价值;h数组存储头指针;cnt计数
struct edge{
int to,pre;
}e[]; //邻接表建树
inline int gi() //读入优化
{
int a=;char x=getchar();bool f=;
while((x>''||x<'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=a*+x-,x=getchar();
return f?-a:a;
}
inline void add(int from,int to) //建树
{
e[++cnt].pre=h[from];
e[cnt].to=to;
h[from]=cnt;
}
inline void dp(int now) //dp过程
{
f[now][]=v[now];
for(int i=h[now];i;i=e[i].pre)
{
int g=e[i].to;
dp(g);
f[now][]+=f[g][];
f[now][]+=max(f[g][],f[g][]);
}
}
int main()
{
n=gi();
for(int i=;i<=n;i++)v[i]=gi(),fa[i]=-;
for(int i=;i<n;i++)
{
int son=gi(),father=gi();
fa[son]=father;
add(father,son);
}
int root=;
while(fa[root]!=-)root=fa[root]; //找出根节点
dp(root);
cout<<max(f[root][],f[root][]); //答案是根节点选或不选的最大值
return ;
}
洛谷P1352 没有上司的舞会——树形DP的更多相关文章
- 洛谷 P1352 没有上司的舞会 树形DP板子
luogu传送门 题目描述: 某大学有n个职员,编号为1~n. 他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司. 现在有个周年庆宴会,宴会每邀请来一个职员都会 ...
- 洛谷 P1352 没有上司的舞会(树形 DP)
题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...
- 洛谷P1352没有上司的舞会+树形二维DP
传送门 题意:上司和直接下属,不能同时去一个聚会,问可邀请到的人的快乐值最大是多少: 参考:https://www.luogu.org/blog/mak2333/solution-p1352 思路: ...
- 洛谷 p1352 没有上司的舞会 题解
P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...
- 洛谷P1352 没有上司的舞会 [2017年5月计划 清北学堂51精英班Day3]
P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子 结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职 ...
- P1352 没有上司的舞会——树形DP入门
P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...
- 洛谷 P1352 没有上司的舞会【树形DP】(经典)
<题目链接> <转载于>>> > 题目描述: 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的 ...
- 洛谷 P1352 没有上司的舞会【树形DP/邻接链表+链式前向星】
题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...
- 洛谷P1352 没有上司的舞会
题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...
随机推荐
- 【SQLSERVER】如何找出字符串中的数字
可以通过写自定义函数实现,以下提供两种思路来解决: 1.通过正则匹配,找到字符串中的数字,一个一个拼起来 /*方法一: 一个一个找出来*/ CREATE FUNCTION [dbo].[Fun_Get ...
- OpenCV人脸识别-训练级联分类器
OpenCV中以及附带了训练好的人脸特征分类器,3.2版本的有三种: 分别是LBP,Haar,Hug 在Data目录下. 也可以训练自己的特征库,具体参照如下: 级联分类器训练 — OpenCV 2. ...
- 数据结构思维导图 Part1
刚刚结束数据结构的学习,在复习阶段,所以做来思维导图总结一下. 思维导图,顾名思义是应该有对思维有引导作用的,就像思维的整理术,然而想要学好什么,光看思维导图总是不够的. 树与图作为两个复杂非线性结构 ...
- CC2541调试问题记录-第一篇
1. 在网络环境过于复杂的地方,手机连接不上CC2541.2. 修改CC2541的设备名字. static uint8 scanRspData[] = { // complete name 0x0d, ...
- [bzoj1564]二叉查找树
题目描述 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小. 另一方面,这棵查找树中每个结点都有一个权值,每个结点的权值都比它的 ...
- Migrating to WebSphere 9
Migrating to WebSphere 9 Make a migration plan Requirements Migrate WebSphere profiles into the new ...
- HTML从入门到放弃
一.HTML 简介 链接:https://www.cnblogs.com/baishuchao/articles/9179920.html 二.HTML 基础 链接:https://www.cnblo ...
- 近中期3D编程研究目标
近几年一直在用业余时间研究3D编程,研究的中期目标是建立一个实用的开源3D编程框架.3D编程技术最直接的应用是开发游戏,所以3D编程框架也就是3D游戏开发框架.在我看来,游戏是否好玩的关键是能否为玩家 ...
- POJ 1417 并查集 dp
After having drifted about in a small boat for a couple of days, Akira Crusoe Maeda was finally cast ...
- [C++] Solve "Cannot run program "gdb": Unknown reason" error
In Mac OSX, The Issue Image: 1. Build the project on Eclipse successfully. 2. Run gdb on command lin ...