第一次自己写树形DP的题,发个博客纪念`~

题目来源:P1352 没有上司的舞会

题目描述

某大学有N个职员,编号为1~N。他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri,但是呢,如果某个职员的上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了。所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数。

输入输出格式

输入格式:

第一行一个整数N。(1<=N<=6000)

接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)

接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。

最后一行输入0 0

输出格式:

输出最大的快乐指数。

输入输出样例

输入样例#1:

7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0
输出样例#1:

5

Solution:

这题乍一看,很容易联想到并查集,但仔细看题,提议中说的是儿子和直接父亲中只能选一个或者都不选,即上司的上司不是我的上司,如果用并查集则会忽略子树的中间状态。这时注意到,相邻的两个点只能取其中一个,而对于以某一节点为根节点的子树的最大值取决于它的子树的节点的子树,可能有点绕,但是不难发现,局部的状态是无后效性的,满足dp的条件。根据思路,便容易得出用f[i][0/1]表示以i为根节点的子树选i/不选i所能获得的最大价值,则状态转移方程便很明显了:

1、f[i][0]+=max(f[son][1],f[son][0])  //意思是对于节点i,如果i不选,则它的值取决于它的字节点最大值,且字节点可选可不选

2、f[i][1]+=max(f[son][0])  //意思是i节点如果选了,则它需要加上的是它字节点不选的最大值

这样题目就能迎刃而解了:

 #include<bits/stdc++.h>
using namespace std;
int n,f[][],fa[],v[],h[],cnt; //f数组表示对于节点i,[i][0]表示不选,[i][1]表示选;fa数组存储i的父节点;v存储节点的价值;h数组存储头指针;cnt计数
struct edge{
int to,pre;
}e[]; //邻接表建树
inline int gi() //读入优化
{
int a=;char x=getchar();bool f=;
while((x>''||x<'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=a*+x-,x=getchar();
return f?-a:a;
}
inline void add(int from,int to) //建树
{
e[++cnt].pre=h[from];
e[cnt].to=to;
h[from]=cnt;
}
inline void dp(int now) //dp过程
{
f[now][]=v[now];
for(int i=h[now];i;i=e[i].pre)
{
int g=e[i].to;
dp(g);
f[now][]+=f[g][];
f[now][]+=max(f[g][],f[g][]);
}
}
int main()
{
n=gi();
for(int i=;i<=n;i++)v[i]=gi(),fa[i]=-;
for(int i=;i<n;i++)
{
int son=gi(),father=gi();
fa[son]=father;
add(father,son);
}
int root=;
while(fa[root]!=-)root=fa[root]; //找出根节点
dp(root);
cout<<max(f[root][],f[root][]); //答案是根节点选或不选的最大值
return ;
}

洛谷P1352 没有上司的舞会——树形DP的更多相关文章

  1. 洛谷 P1352 没有上司的舞会 树形DP板子

    luogu传送门 题目描述: 某大学有n个职员,编号为1~n. 他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司. 现在有个周年庆宴会,宴会每邀请来一个职员都会 ...

  2. 洛谷 P1352 没有上司的舞会(树形 DP)

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  3. 洛谷P1352没有上司的舞会+树形二维DP

    传送门 题意:上司和直接下属,不能同时去一个聚会,问可邀请到的人的快乐值最大是多少: 参考:https://www.luogu.org/blog/mak2333/solution-p1352 思路: ...

  4. 洛谷 p1352 没有上司的舞会 题解

    P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...

  5. 洛谷P1352 没有上司的舞会 [2017年5月计划 清北学堂51精英班Day3]

    P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子 结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职 ...

  6. P1352 没有上司的舞会——树形DP入门

    P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...

  7. 洛谷 P1352 没有上司的舞会【树形DP】(经典)

    <题目链接> <转载于>>> > 题目描述: 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的 ...

  8. 洛谷 P1352 没有上司的舞会【树形DP/邻接链表+链式前向星】

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  9. 洛谷P1352 没有上司的舞会

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

随机推荐

  1. 4361: isn

    4361: isn https://lydsy.com/JudgeOnline/problem.php?id=4361 分析: dp+容斥. 首先计算出每个长度有多少种子序列是非降的.这一步可以$n^ ...

  2. P3368 【模板】树状数组 2(区间增减,单点查询)

    P3368 [模板]树状数组 2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数数加上x 2.求出某一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别表 ...

  3. Android开发笔记——视频录制播放常见问题

    本文分享自己在视频录制播放过程中遇到的一些问题,主要包括: 视频录制流程 视频预览及SurfaceHolder 视频清晰度及文件大小 视频文件旋转 一.视频录制流程 以微信为例,其录制触发为按下(住) ...

  4. python编码和小数据池

    python_day_6 一. 回顾上周所有内容一. python基础 Python是一门解释型. 弱类型语言 print("内容", "内容", end=&q ...

  5. linux信号处理相关知识

      因为要处理最近项目中碰上的多个子进程退出信号同时到达,导致程序不当产生core的情况,今天我花了时间看了一些关于linux信号处理的博客. 总结一下:(知识未经实践) linux信号分两种,一种实 ...

  6. Python+MySQL开发医院网上预约系统(课程设计)一

    一:开发环境的配置 1:桌面环境为cnetos7+python2.7 2:MySQL的安装与配置 1)MySQL的安装 MySQL官方文档: http://dev.mysql.com/doc/mysq ...

  7. header field token is not allowed by Access-Control-Allow-Headers in preflight response问题解决

    今天下午,本来打算使用aioxs在header里传一个token给后台服务器,如下图所示: 结果,控制台报了如下的错: 然后,我不停地百度,不停的改后台express的header设置,一直没有效果: ...

  8. UTF-8编码下'\u7528\u6237'转换为中文汉字'用户'

    UTF-8编码下'\u7528\u6237'转换为中文'用户' 一.前言 有过多次,在开发项目中遇见设置文件编码格式为UTF-8,但是打开该文件出现类似\u7528这样的数据,看也看不懂,也不是平常见 ...

  9. openstack golang sdk使用

    1. go get github.com/gophercloud/gophercloud import ( "github.com/gophercloud/gophercloud" ...

  10. day09,10 函数

    一.函数 什么是函数 函数: 对代码块和功能的封装和定义 定义一个事情或者功能. 等到需要的时候直接去用就好了. 那么这里定义的东西就是一个函数. 语法: def 函数名(形参): 函数体 函数名(实 ...