洛谷P1352 没有上司的舞会——树形DP
第一次自己写树形DP的题,发个博客纪念`~
题目来源:P1352 没有上司的舞会
题目描述
某大学有N个职员,编号为1~N。他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri,但是呢,如果某个职员的上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了。所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数。
输入输出格式
输入格式:
第一行一个整数N。(1<=N<=6000)
接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)
接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。
最后一行输入0 0
输出格式:
输出最大的快乐指数。
输入输出样例
7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0
5
Solution:
这题乍一看,很容易联想到并查集,但仔细看题,提议中说的是儿子和直接父亲中只能选一个或者都不选,即上司的上司不是我的上司,如果用并查集则会忽略子树的中间状态。这时注意到,相邻的两个点只能取其中一个,而对于以某一节点为根节点的子树的最大值取决于它的子树的节点的子树,可能有点绕,但是不难发现,局部的状态是无后效性的,满足dp的条件。根据思路,便容易得出用f[i][0/1]表示以i为根节点的子树选i/不选i所能获得的最大价值,则状态转移方程便很明显了:
1、f[i][0]+=max(f[son][1],f[son][0]) //意思是对于节点i,如果i不选,则它的值取决于它的字节点最大值,且字节点可选可不选
2、f[i][1]+=max(f[son][0]) //意思是i节点如果选了,则它需要加上的是它字节点不选的最大值
这样题目就能迎刃而解了:
#include<bits/stdc++.h>
using namespace std;
int n,f[][],fa[],v[],h[],cnt; //f数组表示对于节点i,[i][0]表示不选,[i][1]表示选;fa数组存储i的父节点;v存储节点的价值;h数组存储头指针;cnt计数
struct edge{
int to,pre;
}e[]; //邻接表建树
inline int gi() //读入优化
{
int a=;char x=getchar();bool f=;
while((x>''||x<'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=a*+x-,x=getchar();
return f?-a:a;
}
inline void add(int from,int to) //建树
{
e[++cnt].pre=h[from];
e[cnt].to=to;
h[from]=cnt;
}
inline void dp(int now) //dp过程
{
f[now][]=v[now];
for(int i=h[now];i;i=e[i].pre)
{
int g=e[i].to;
dp(g);
f[now][]+=f[g][];
f[now][]+=max(f[g][],f[g][]);
}
}
int main()
{
n=gi();
for(int i=;i<=n;i++)v[i]=gi(),fa[i]=-;
for(int i=;i<n;i++)
{
int son=gi(),father=gi();
fa[son]=father;
add(father,son);
}
int root=;
while(fa[root]!=-)root=fa[root]; //找出根节点
dp(root);
cout<<max(f[root][],f[root][]); //答案是根节点选或不选的最大值
return ;
}
洛谷P1352 没有上司的舞会——树形DP的更多相关文章
- 洛谷 P1352 没有上司的舞会 树形DP板子
luogu传送门 题目描述: 某大学有n个职员,编号为1~n. 他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司. 现在有个周年庆宴会,宴会每邀请来一个职员都会 ...
- 洛谷 P1352 没有上司的舞会(树形 DP)
题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...
- 洛谷P1352没有上司的舞会+树形二维DP
传送门 题意:上司和直接下属,不能同时去一个聚会,问可邀请到的人的快乐值最大是多少: 参考:https://www.luogu.org/blog/mak2333/solution-p1352 思路: ...
- 洛谷 p1352 没有上司的舞会 题解
P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...
- 洛谷P1352 没有上司的舞会 [2017年5月计划 清北学堂51精英班Day3]
P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子 结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职 ...
- P1352 没有上司的舞会——树形DP入门
P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...
- 洛谷 P1352 没有上司的舞会【树形DP】(经典)
<题目链接> <转载于>>> > 题目描述: 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的 ...
- 洛谷 P1352 没有上司的舞会【树形DP/邻接链表+链式前向星】
题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...
- 洛谷P1352 没有上司的舞会
题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...
随机推荐
- itop4412学习-上层应用多任务开发
1. 首先搭建虚拟机VMWARE12.0+UBUNTU16.04,不过报错了,说是要关闭计算机(非重启)-- 进入BIOS -- 设置BIOS的虚拟化(不打开,默认是工作在32位模式的,virtual ...
- kettle 将job等导入导出成xml
一.导出 工具->资源库->探索资源库 就可以看见资源库里面的资源了. 如果要导出资源库里面的某个目录就右键就行了. 如果要导出全部资源库的文件就如下图所示 将资源库导出其实也是一个xml ...
- 「日常训练」 Fire!(UVA-11624)
与其说是训练不如说是重温.重新写了Java版本的代码. import java.util.*; import java.math.*; import java.io.BufferedInputStre ...
- 英特尔® 实感™ 前置摄像头 SR300 和 F200 的比较
原文地址 简介 SR300 是支持 Microsoft Windows 10 操作系统的第二代英特尔® 实感™ 前置摄像头. 与 F200 摄像头型号相似,SR300 使用编码光深技术,在更小范围内创 ...
- 利用Tensorflow进行自然语言处理(NLP)系列之二高级Word2Vec
本篇也同步笔者另一博客上(https://blog.csdn.net/qq_37608890/article/details/81530542) 一.概述 在上一篇中,我们介绍了Word2Vec即词向 ...
- 使用经验风险最小化ERM方法来估计模型误差 开坑
虽然已经学习了许多机器学习的方法,可只有我们必须知道何时何处使用哪种方法,才能将他们正确运用起来. 那不妨使用经验最小化ERM方法来估计 . 首先: 其中, δ代表训练出错的概率 k代表假设类的个数 ...
- 子元素设置margin-top后,父元素跟随下移的问题
子元素设置margin-top后,父元素跟随下移的问题 <!DOCTYPE html> <html lang="en"> <head> < ...
- Beta发布-----欢迎来怼团队
欢迎来怼项目小组—Beta发布展示 一.小组成员 队长:田继平 成员:葛美义,王伟东,姜珊,邵朔,阚博文 ,李圆圆 二.文案+美工展示 链接:http://www.cnblogs.com/js2017 ...
- 关于cnblog.com的用户体验
首先我自己目前是一个学生党,每天在博客园上就上发布一些自己做的东西以及老师布置的作业,还能在上面学习很多别人的一些好的列子,我就希望博客园能够很好地为我们这些学生服务,当我们用它时能够很好地达到我们的 ...
- web.config详解(转载)
该文为转载 原文地址:http://www.cnblogs.com/gaoweipeng/archive/2009/05/17/1458762.html 花了点时间整理了一下ASP.NET Web.c ...