UVa 10735 - Euler Circuit(最大流 + 欧拉回路)
链接:
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1676
题意:
给出一个V个点和E条边(1≤V≤100,1≤E≤500)的混合图(即有的边是无向边,有的边是有向边),
试求出它的一条欧拉回路,如果没有,输出无解信息。输入保证在忽略边的方向之后图是连通的。
分析:
很多混合图问题(例如,混合图的最短路)都可以转化为有向图问题,方法是把无向边拆成两条方向相反的有向边。
可惜本题不能使用这种方法,因为本题中的无向边只能经过一次,
而拆成两条有向边之后变成了“沿着两个相反方向各经过一次”。所以本题不能拆边,而只能给边定向。
假设输入的原图为G。首先把它的无向边任意定向,然后把定向后的有向边单独组成另外一个图G'。
具体来说,初始时G'为空,对于G中的每条无向边u-v,把它改成有向边u->v,然后在G'中连一条边u->v
(注意这个定向是任意的。如果定向为v->u,则在G'中连一条边v->u)。
接下来检查每个点i在G中的入度和出度。如果所有点的入度和出度相等,则现在的G已经存在欧拉回路。
假设一个点的入度为2,出度为4,则可以想办法把一条出边变成入边(前提是那条出边原来是无向边),
这样入度和出度就都等于3了;一般地,如果一个点的入度为in(i),出度为out(i),
则只需把出度增加(in(i)-out(i))/2即可(因为总度数不变,此时入度一定会和出度相等)。
如果in(i)和out(i)的奇偶性不同,则问题无解。
如果把G'中的一条边u->v反向成v->u,则u的出度减1,v的出度加1,
就像是把一个叫“出度”的物品从结点u“运输”到了结点v。是不是很像网络流?
也就是说,满足out(i)>in(i)的每个点能“提供”一些“出度”,而out(i)<in(i)的点则“需要”一些“出度”。
如果能算出一个网络流,把这些“出度”运输到需要它们的地方,问题就得到了解决(有流量的边对应"把边反向"操作)。
具体实现见代码。
代码:
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
using namespace std; /// 结点下标从0开始,注意maxn
struct Dinic {
static const int maxn = 1e3 + ;
static const int INF = 0x3f3f3f3f;
struct Edge {
int from, to, cap, flow;
}; int n, m, s, t; // 结点数,边数(包括反向弧),源点编号和汇点编号
vector<Edge> edges; // 边表。edges[e]和edges[e^1]互为反向弧
vector<int> G[maxn]; // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
bool vis[maxn]; // BFS使用
int d[maxn]; // 从起点到i的距离
int cur[maxn]; // 当前弧下标 void init(int n) {
this->n = n;
edges.clear();
for(int i = ; i < n; i++) G[i].clear();
}
void AddEdge(int from, int to, int cap) {
edges.push_back((Edge){from, to, cap, });
edges.push_back((Edge){to, from, , });
m = edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
}
bool BFS() {
memset(vis, , sizeof(vis));
queue<int> Q;
Q.push(s);
vis[s] = ;
d[s] = ;
while(!Q.empty()) {
int x = Q.front(); Q.pop();
for(int i = ; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if(!vis[e.to] && e.cap > e.flow) { // 只考虑残量网络中的弧
vis[e.to] = ;
d[e.to] = d[x] + ;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x, int a) {
if(x == t || a == ) return a;
int flow = , f;
for(int& i = cur[x]; i < G[x].size(); i++) { // 从上次考虑的弧
Edge& e = edges[G[x][i]];
if(d[x]+ == d[e.to] && (f=DFS(e.to, min(a, e.cap-e.flow))) > ) {
e.flow += f;
edges[G[x][i]^].flow -= f;
flow += f;
a -= f;
if(a == ) break;
}
}
return flow;
}
int Maxflow(int s, int t) {
this->s = s; this->t = t;
int flow = ;
while(BFS()) {
memset(cur, , sizeof(cur));
flow += DFS(s, INF);
}
return flow;
}
vector<int> Mincut() { // 在Maxflow之后调用
vector<int> ans;
for(int i = ; i < edges.size(); i++) {
Edge& e = edges[i];
if(vis[e.from] && !vis[e.to] && e.cap > ) ans.push_back(i);
}
return ans;
}
} dc; const int UP = + ;
int n, m, f[UP], b[UP], directed[UP], out[UP], id[UP];
vector<int> ans, edge[UP], vis[UP]; void euler(int v) {
for(int i = ; i < edge[v].size(); i++) {
if(vis[v][i]) continue;
vis[v][i] = true;
euler(edge[v][i]);
ans.push_back(edge[v][i]+);
}
} void output_ans() {
for(int i = ; i < n; i++) { edge[i].clear(); vis[i].clear(); }
for(int i = ; i < m; i++) {
bool rev = false;
if(!directed[i] && dc.edges[id[i]].flow > ) rev = true;
if(rev) { edge[b[i]].push_back(f[i]); vis[b[i]].push_back(false); }
else { edge[f[i]].push_back(b[i]); vis[f[i]].push_back(false); }
}
ans.clear();
euler();
printf("");
for(int i = ans.size() - ; i >= ; i--) printf(" %d", ans[i]);
printf("\n");
} int main() {
int T;
char s[];
scanf("%d", &T);
while(T--) {
scanf("%d%d", &n, &m);
dc.init(n+);
memset(out, , sizeof(out));
for(int i = ; i < m; i++) {
scanf("%d%d%s", &f[i], &b[i], s);
directed[i] = (s[] == 'D');
f[i]--; b[i]--;
out[f[i]]++; out[b[i]]--;
if(!directed[i]) {
id[i] = dc.edges.size();
dc.AddEdge(f[i], b[i], );
}
} bool ok = true;
for(int i = ; i < n; i++) if(out[i] % != ) { ok = false; break; }
if(ok) {
int start = n, finish = n+, sum = ;
for(int i = ; i < n; i++) {
if(out[i] > ) { dc.AddEdge(start, i, out[i]/); sum += out[i]/; }
else if(out[i] < ) dc.AddEdge(i, finish, -out[i]/);
}
if(sum != dc.Maxflow(start, finish)) ok = false;
}
if(ok) output_ans();
else printf("No euler circuit exist\n");
if(T) printf("\n");
}
return ;
}
UVa 10735 - Euler Circuit(最大流 + 欧拉回路)的更多相关文章
- UVA 10735 Euler Circuit 混合图的欧拉回路(最大流,fluery算法)
题意:给一个图,图中有部分是向边,部分是无向边,要求判断是否存在欧拉回路,若存在,输出路径. 分析:欧拉回路的定义是,从某个点出发,每条边经过一次之后恰好回到出发点. 无向边同样只能走一次,只是不限制 ...
- UVA 10735 Euler Circuit (最大流)
题意:求混合图的欧拉路径. 一句话总结:网络流,最主要在于建图,此题是将出度则是和流量联系在了一起,用最大流来调整边的指向. 分析: 这题的困难之处在于无向边只能用一次,相当于一个方向未定的有向边. ...
- 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流)
这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当 ...
- UVa 10735 (混合图的欧拉回路) Euler Circuit
题意: 给出一个图,有的边是有向边,有的是无向边.试找出一条欧拉回路. 分析: 按照往常的思维,遇到混合图,我们一般会把无向边拆成两条方向相反的有向边. 但是在这里却行不通了,因为拆成两条有向边的话, ...
- Euler Circuit UVA - 10735(混合图输出路径)
就是求混合图是否存在欧拉回路 如果存在则输出一组路径 (我就说嘛 咱的代码怎么可能错.....最后的输出格式竟然w了一天 我都没发现) 解析: 对于无向边定向建边放到网络流图中add(u, v, 1) ...
- UVA-10735 - Euler Circuit(混合欧拉回路输出)
题意:给你一个图,有N个点,M条边,这M条边有的是单向的,有的是双向的. 问你能否找出一条欧拉回路,使得每条边都只经过一次! 分析: 下面转自别人的题解: 把该图的无向边随便定向,然后计算每个点的入度 ...
- UVA LIVE-3263 - That Nice Euler Circuit
画一个顶点为偶数的封闭的二维图,当然.这个图能够自交,给出画的过程中的一些轨迹点.求出这个图把二次元分成了几部分,比如三角形把二次元分成了两部分. 这个的话,有图中顶点数+部分数-棱数=2的定律,这是 ...
- Uva 1342 - That Nice Euler Circuit
Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his ...
- poj2284 That Nice Euler Circuit(欧拉公式)
题目链接:poj2284 That Nice Euler Circuit 欧拉公式:如果G是一个阶为n,边数为m且含有r个区域的连通平面图,则有恒等式:n-m+r=2. 欧拉公式的推广: 对于具有k( ...
随机推荐
- PHP项目学习1
最近在学习PHP,看了<轻松学PHP>,2天看完,学习了很多基础知识,可是没有出什么成果.然后看<PHP项目开发全程实录>,里面讲到一个online影视365网,刚好有一个朋友 ...
- 对datatable添加数据
DataTable dt = new DataTable(); dt.Columns.Clear(); dt.Columns.Add("事故发生时间"); dt.Columns.A ...
- Eclipse 反编译之 JadClipse
一:下载对应的 net.sf.jadclipse_x.x.x.jar ,把该jar包放入到Eclipse中的 plugins 目录下,下载地址:https://sourceforge.net/proj ...
- 【SSH网上商城项目实战12】添加和更新商品功能的实现
转自: https://blog.csdn.net/eson_15/article/details/51366370 添加商品部分原理和添加商品类别是一样的,不过要比商品类别复杂,因为商品的属性有很多 ...
- POJ 2184(01背包)(负体积)
http://poj.org/problem?id=2184 http://blog.csdn.net/liuqiyao_01/article/details/8753686 对于负体积问题,可以先定 ...
- BZOJ4659:lcm
传送门 题目所给的不合法的条件可以转化为 \[\exists p,p^2|gcd(a,b) \Leftrightarrow \mu(gcd(a,b))\ne 0\] 那么 \[ans=\sum_{a= ...
- Unable to update index for central http://repo1.maven.org/maven2/ 解决方法
不知道什么原因 MyEclipse(eclipse) 中的 maven 插件突然不能用了,修改 pom.xml 无任何反应 控制台报 Unable to update index for centra ...
- Java设计模式—代理模式
代理模式(Proxy Pattern)也叫做委托模式,是一个使用率非常高的模式. 定义如下: 为其他对象提供一种代理以控制对这个对象的访问. 个人理解: 代理模式将原类进行封装, ...
- 服务器端的tomcat,servlet框架
tomcat是一个服务器程序 可以对webapp目录下的Servlet代码进行执行和操作 编写的Servlet代码的步骤一般是在本地的ide中编写和测试,然后打包工程为war格式的文件,部署在服务器t ...
- Linux下postgres安装fuzzystrmatch其他拓展包
(1)安装gdal # wget http://download.osgeo.org/gdal/2.0.0/gdal-2.0.0.tar.gz # tar zxvf gdal-2.0.0.tar.gz ...