函数f(x)用采样间隔Δx=π/5进行采样,使用向前差商、向后差商和中心差商三种公式来近似一阶导数。

书中代码:

%% ------------------------------------------------------------------------------
%% Output Info about this m-file
fprintf('\n****************************************************************\n');
fprintf('\n <FDTD 4 ElectroMagnetics with MATLAB Simulations> \n');
fprintf('\n Figure 1.2 \n\n'); time_stamp = datestr(now, 31);
[wkd1, wkd2] = weekday(today, 'long');
fprintf(' Now is %20s, and it is %7s \n\n', time_stamp, wkd2);
%% ------------------------------------------------------------------------------ % Create exact function and its derivative
N_exact = 301; % number of sample points for exact function
x_exact = linspace(0, 6*pi, N_exact);
f_exact = sin(x_exact) .* exp(-0.3*x_exact);
f_derivative_exact = cos(x_exact) .* exp(-0.3*x_exact) - 0.3*sin(x_exact).*exp(-0.3*x_exact); % plot exact function
figure('NumberTitle', 'off', 'Name', 'Figure 1.2.a');
set(gcf,'Color','white'); plot(x_exact, f_exact, 'k-', 'linewidth', 1.5);
set(gca, 'fontsize', 12, 'fontweight', 'demi');
axis([0 6*pi -1 1]); grid on;
xlabel('$x$', 'interpreter', 'latex', 'fontsize', 16);
ylabel('$f(x)$', 'interpreter', 'latex', 'fontsize', 16);
title('Exact function'); % create exact function for pi/5 sampleing peroid and
% its finite difference derivatives
N_a = 31; % number of points for pi/5 sampling period
x_a = linspace(0, 6*pi, N_a); % [0, 6pi], row vector with 31 points
f_a = sin(x_a) .* exp(-0.3*x_a);
f_derivative_a = cos(x_a) .* exp(-0.3*x_a) - 0.3*sin(x_a) .* exp(-0.3*x_a); dx_a = pi/5;
f_derivative_forward_a = zeros(1, N_a); % 1×31 zero matrix
f_derivative_backward_a = zeros(1, N_a);
f_derivative_central_a = zeros(1, N_a); f_derivative_forward_a(1:N_a-1) = (f_a(2:N_a)-f_a(1:N_a-1))/dx_a;
f_derivative_backward_a(2:N_a) = (f_a(2:N_a)-f_a(1:N_a-1))/dx_a;
f_derivative_central_a(2:N_a-1) = (f_a(3:N_a)-f_a(1:N_a-2))/(2*dx_a); % create exact function for pi/10 sampleing peroid and
% its finite difference derivatives
N_b = 61; % number of points for pi/10 sampling period
x_b = linspace(0, 6*pi, N_b);
f_b = sin(x_b) .* exp(-0.3*x_b);
f_derivative_b = cos(x_b) .* exp(-0.3*x_b) - 0.3*sin(x_b) .* exp(-0.3*x_b); dx_b = pi/10;
f_derivative_forward_b = zeros(1, N_b);
f_derivative_backward_b = zeros(1, N_b);
f_derivative_central_b = zeros(1, N_b);
f_derivative_forward_b(1:N_b-1) = (f_b(2:N_b)-f_b(1:N_b-1))/dx_b;
f_derivative_backward_b(2:N_b) = (f_b(2:N_b)-f_b(1:N_b-1))/dx_b;
f_derivative_central_b(2:N_b-1) = (f_b(3:N_b)-f_b(1:N_b-2))/(2*dx_b); % plot exact derivative of the function and its finite difference
% derivatives using pi/5 sampling period
figure('NumberTitle', 'off', 'Name', 'Figure 1.2.b');
set(gcf,'Color','white'); plot(x_exact, f_derivative_exact, 'k', ...
x_a(1:N_a-1), f_derivative_forward_a(1:N_a-1), 'b--', ...
x_a(2:N_a), f_derivative_backward_a(2:N_a), 'r-.', ...
x_a(2:N_a-1), f_derivative_central_a(2:N_a-1), ':ms', ...
'markersize', 4, 'linewidth', 1.5);
set(gca, 'fontsize', 12, 'fontweight', 'demi');
axis([0 6*pi -1 1]); grid on;
legend('exact', 'forward difference', 'backward difference', 'central difference');
xlabel('$x$', 'interpreter', 'latex', 'fontsize', 16);
ylabel('$f''(x)$', 'interpreter', 'latex', 'fontsize', 16);
text(pi, 0.6, '$\Delta x = \pi/5$', 'interpreter', 'latex', 'fontsize', 16, 'backgroundcolor', ...
'w', 'edgecolor', 'k'); % plot error for finite difference derivatives
% using pi/5 sampling period
error_forward_a = f_derivative_a - f_derivative_forward_a;
error_backward_a = f_derivative_a - f_derivative_backward_a;
error_central_a = f_derivative_a - f_derivative_central_a; figure('NumberTitle', 'off', 'Name', 'Figure 1.2.c');
set(gcf,'Color','white');
plot(x_a(1:N_a-1), error_forward_a(1:N_a-1), 'b--', ...
x_a(2:N_a), error_backward_a(2:N_a), 'r--', ...
x_a(2:N_a-1), error_central_a(2:N_a-1), ':ms', ...
'markersize', 4, 'linewidth', 1.5);
set(gca, 'fontsize', 12, 'fontweight', 'demi');
axis([0 6*pi -0.2 0.2]); grid on;
legend('forward difference', 'backward difference', 'central difference');
xlabel('$x$', 'interpreter', 'latex', 'fontsize', 16);
ylabel('error $[f''(x)]$' , 'interpreter', 'latex', 'fontsize', 16);
text(pi, 0.15, '$\Delta x = \pi/5$', 'interpreter', 'latex', 'fontsize', 16, ...
'backgroundcolor', 'w', 'edgecolor', 'k'); % plot error for finite difference derivatives
% using pi/10 sampling period
error_forward_b = f_derivative_b - f_derivative_forward_b;
error_backward_b = f_derivative_b - f_derivative_backward_b;
error_central_b = f_derivative_b - f_derivative_central_b; figure('NumberTitle', 'off', 'Name', 'Figure 1.2.d');
set(gcf,'Color','white');
plot(x_b(1:N_b-1), error_forward_b(1:N_b-1), 'b--', ...
x_b(2:N_b), error_backward_b(2:N_b), 'r-.', ...
x_b(2:N_b-1), error_central_b(2:N_b-1), ':ms', ...
'markersize', 4, 'linewidth', 1.5);
set(gca, 'fontsize', 12, 'fontweight', 'demi');
axis([0 6*pi -0.2 0.2]); grid on;
legend('forward difference', 'backward difference', 'central difference');
xlabel('$x$', 'interpreter', 'latex', 'fontsize', 16);
ylabel('error $[f''(x)]$' , 'interpreter', 'latex', 'fontsize', 16);
text(pi, 0.15, '$\Delta x = \pi/10$' , 'interpreter', ...
'latex', 'fontsize', 16, 'backgroundcolor', 'w', 'edgecolor', 'k' );

  运行结果:

上图是函数图形,看出振幅是指数衰减的。下图是一阶导数的精确值(公式计算)和三种差商近似结果。中心差商近似结果接近

精确值。

下图是在Δx=π/5采样间隔下,三种差商近似与精确值之间的误差对比。可以看出中心差商近似的误差最小。

下图是Δx=π/10采样间隔下,三种差商近似与精确值之间的误差对比。可以看出中心差商近似的误差最小。另外由于向前差商和

向后差商近似是1阶精度,中心差商近似是2阶精度,所以采样间隔由π/5变成π/10后,向前差商和向后差商近似误差变为原来的二分之一,

而中心差商近似误差变为原来的四分之一。

《FDTD electromagnetic field using MATLAB》读书笔记 Figure 1.2的更多相关文章

  1. 《FDTD electromagnetic field using MATLAB》读书笔记之 Figure 1.14

    背景: 基于公式1.42(Ez分量).1.43(Hy分量)的1D FDTD实现. 计算电场和磁场分量,该分量由z方向的电流片Jz产生,Jz位于两个理想导体极板中间,两个极板平行且向y和z方向无限延伸. ...

  2. 《FDTD electromagnetic field using MATLAB》读书笔记之一阶、二阶偏导数差商近似

  3. 《FDTD electromagnetic field using MATLAB 》读书笔记001-差商种类

    有限差分就是用差商代替微商,有3钟: 1.向前差商 2.向后差商 3.中心差商 上面三张途中虚线就是函数在x的精确微商(偏导数),直线就是用来代替精确 微商的差商格式.

  4. Matlab学习笔记 figure函数

    Matlab学习笔记 figure函数 matlab中的 figure 命令,能够创建一个用来显示图形输出的一个窗口对象.每一个这样的窗口都有一些属性,例如窗口的尺寸.位置,等等.下面一一介绍它们. ...

  5. TJI读书笔记17-字符串

    TJI读书笔记17-字符串 不可变的String 重载”+”和StringBuilder toString()方法的一个坑 String上的操作 格式化输出 Formatter类 字符串操作可能是计算 ...

  6. WPF,Silverlight与XAML读书笔记第四十三 - 多媒体支持之文本与文档

    说明:本系列基本上是<WPF揭秘>的读书笔记.在结构安排与文章内容上参照<WPF揭秘>的编排,对内容进行了总结并加入一些个人理解. Glyphs对象(WPF,Silverlig ...

  7. 《Linux内核设计与实现》 Chapter4 读书笔记

    <Linux内核设计与实现> Chapter4 读书笔记 调度程序负责决定将哪个进程投入运行,何时运行以及运行多长时间,进程调度程序可看做在可运行态进程之间分配有限的处理器时间资源的内核子 ...

  8. ANTLR3完全参考指南读书笔记[06]

    前言 这段时间在公司忙的跟狗似的,但忙的是没多少技术含量的活儿. 终于将AST IR和tree grammar过了一遍,计划明天写完这部分的读书笔记.   内容 1 内部表示AST构建 2 树文法   ...

  9. 认识CLR [《CLR via C#》读书笔记]

    认识CLR [<CLR via C#>读书笔记] <CLR via C#>读书笔记 什么是CLR CLR的基本概念 通用语言运行平台(Common Language Runti ...

随机推荐

  1. CDOJ 1048 Bob's vector(快速幂+三分法)

    题目大意:原题链接 给定数组A[i]的计算方法,求出其任意一个极值点 解题思路:求极值点用三分法,一般计算100次足矣,所以三分时上限为100,不过运行时间可能会长一点    用for循环    用w ...

  2. ruby中的回调方法和钩子方法

    在ruby中,当某些特定的事件发生时,将调用回调方法和钩子方法.事件有如下几种: 调用一个不存在的对象方法 类混含一个模块 定义类的子类 给类添加一个实例方法 给对象添加一个单例方法 引用一个不存在的 ...

  3. SQL学习笔记之SQL查询练习题1

    (网络搜集) 0x00 表名和字段 –1.学生表 Student(s_id,s_name,s_birth,s_sex) –学生编号,学生姓名, 出生年月,学生性别 –2.课程表 Course(c_id ...

  4. 五,动态库(dll)的封装与使用

    在项目开发中,我们经常会使用到动态库(dll),要么是使用别人的动态库,要么是将功能函数封装为动态库给别人用.那么如何封装和使用动态库呢?以下内容为你讲解. 1.动态库的封装 以vs2010为例,我们 ...

  5. 上传jar包至nexus

    上传命令: mvn deploy:deploy-file -DgroupId=com.xxx -DartifactId=xxx-pdf -Dversion=16.10.0 -Dpackaging=ja ...

  6. 试着用React写项目-利用Webpack搭环境

    转载请注明出处:王亟亟的大牛之路 最近都蛋疼,然后前些天开了个会就是关于"不加班就得死"的死命令,作为抵制加班的先头兵,我感觉我时日无多是时候加快武装自己的速度不然吃土都不配了,就 ...

  7. NSwag给api加上说明

    参考http://petstore.swagger.io 给controller加上description https://github.com/RSuter/NSwag/issues/1803 xm ...

  8. [SpringBoot] - 配置文件的多种形式及优先级

              学习两个注解: @PropertySource   @ImportResource  ↓   @ConfigurationProperties  与 @Bean 结合为属性赋值 与 ...

  9. LA 3268 号码簿分组(最大流+二分)

    https://vjudge.net/problem/UVALive-3268 题意: 有n个人和m个组.一个人可能属于很多组.现在请你从某些组中去掉几个人,使得每个人只属于一个组,并使得人数最多的组 ...

  10. Composite(组合)

    意图: 将对象组合成树形结构以表示“部分-整体”的层次结构.C o m p o s i t e 使得用户对单个对象和组合对象的使用具有一致性. 适用性: 你想表示对象的部分-整体层次结构. 你希望用户 ...