《FDTD electromagnetic field using MATLAB》读书笔记 Figure 1.2

函数f(x)用采样间隔Δx=π/5进行采样,使用向前差商、向后差商和中心差商三种公式来近似一阶导数。
书中代码:
%% ------------------------------------------------------------------------------
%% Output Info about this m-file
fprintf('\n****************************************************************\n');
fprintf('\n <FDTD 4 ElectroMagnetics with MATLAB Simulations> \n');
fprintf('\n Figure 1.2 \n\n'); time_stamp = datestr(now, 31);
[wkd1, wkd2] = weekday(today, 'long');
fprintf(' Now is %20s, and it is %7s \n\n', time_stamp, wkd2);
%% ------------------------------------------------------------------------------ % Create exact function and its derivative
N_exact = 301; % number of sample points for exact function
x_exact = linspace(0, 6*pi, N_exact);
f_exact = sin(x_exact) .* exp(-0.3*x_exact);
f_derivative_exact = cos(x_exact) .* exp(-0.3*x_exact) - 0.3*sin(x_exact).*exp(-0.3*x_exact); % plot exact function
figure('NumberTitle', 'off', 'Name', 'Figure 1.2.a');
set(gcf,'Color','white'); plot(x_exact, f_exact, 'k-', 'linewidth', 1.5);
set(gca, 'fontsize', 12, 'fontweight', 'demi');
axis([0 6*pi -1 1]); grid on;
xlabel('$x$', 'interpreter', 'latex', 'fontsize', 16);
ylabel('$f(x)$', 'interpreter', 'latex', 'fontsize', 16);
title('Exact function'); % create exact function for pi/5 sampleing peroid and
% its finite difference derivatives
N_a = 31; % number of points for pi/5 sampling period
x_a = linspace(0, 6*pi, N_a); % [0, 6pi], row vector with 31 points
f_a = sin(x_a) .* exp(-0.3*x_a);
f_derivative_a = cos(x_a) .* exp(-0.3*x_a) - 0.3*sin(x_a) .* exp(-0.3*x_a); dx_a = pi/5;
f_derivative_forward_a = zeros(1, N_a); % 1×31 zero matrix
f_derivative_backward_a = zeros(1, N_a);
f_derivative_central_a = zeros(1, N_a); f_derivative_forward_a(1:N_a-1) = (f_a(2:N_a)-f_a(1:N_a-1))/dx_a;
f_derivative_backward_a(2:N_a) = (f_a(2:N_a)-f_a(1:N_a-1))/dx_a;
f_derivative_central_a(2:N_a-1) = (f_a(3:N_a)-f_a(1:N_a-2))/(2*dx_a); % create exact function for pi/10 sampleing peroid and
% its finite difference derivatives
N_b = 61; % number of points for pi/10 sampling period
x_b = linspace(0, 6*pi, N_b);
f_b = sin(x_b) .* exp(-0.3*x_b);
f_derivative_b = cos(x_b) .* exp(-0.3*x_b) - 0.3*sin(x_b) .* exp(-0.3*x_b); dx_b = pi/10;
f_derivative_forward_b = zeros(1, N_b);
f_derivative_backward_b = zeros(1, N_b);
f_derivative_central_b = zeros(1, N_b);
f_derivative_forward_b(1:N_b-1) = (f_b(2:N_b)-f_b(1:N_b-1))/dx_b;
f_derivative_backward_b(2:N_b) = (f_b(2:N_b)-f_b(1:N_b-1))/dx_b;
f_derivative_central_b(2:N_b-1) = (f_b(3:N_b)-f_b(1:N_b-2))/(2*dx_b); % plot exact derivative of the function and its finite difference
% derivatives using pi/5 sampling period
figure('NumberTitle', 'off', 'Name', 'Figure 1.2.b');
set(gcf,'Color','white'); plot(x_exact, f_derivative_exact, 'k', ...
x_a(1:N_a-1), f_derivative_forward_a(1:N_a-1), 'b--', ...
x_a(2:N_a), f_derivative_backward_a(2:N_a), 'r-.', ...
x_a(2:N_a-1), f_derivative_central_a(2:N_a-1), ':ms', ...
'markersize', 4, 'linewidth', 1.5);
set(gca, 'fontsize', 12, 'fontweight', 'demi');
axis([0 6*pi -1 1]); grid on;
legend('exact', 'forward difference', 'backward difference', 'central difference');
xlabel('$x$', 'interpreter', 'latex', 'fontsize', 16);
ylabel('$f''(x)$', 'interpreter', 'latex', 'fontsize', 16);
text(pi, 0.6, '$\Delta x = \pi/5$', 'interpreter', 'latex', 'fontsize', 16, 'backgroundcolor', ...
'w', 'edgecolor', 'k'); % plot error for finite difference derivatives
% using pi/5 sampling period
error_forward_a = f_derivative_a - f_derivative_forward_a;
error_backward_a = f_derivative_a - f_derivative_backward_a;
error_central_a = f_derivative_a - f_derivative_central_a; figure('NumberTitle', 'off', 'Name', 'Figure 1.2.c');
set(gcf,'Color','white');
plot(x_a(1:N_a-1), error_forward_a(1:N_a-1), 'b--', ...
x_a(2:N_a), error_backward_a(2:N_a), 'r--', ...
x_a(2:N_a-1), error_central_a(2:N_a-1), ':ms', ...
'markersize', 4, 'linewidth', 1.5);
set(gca, 'fontsize', 12, 'fontweight', 'demi');
axis([0 6*pi -0.2 0.2]); grid on;
legend('forward difference', 'backward difference', 'central difference');
xlabel('$x$', 'interpreter', 'latex', 'fontsize', 16);
ylabel('error $[f''(x)]$' , 'interpreter', 'latex', 'fontsize', 16);
text(pi, 0.15, '$\Delta x = \pi/5$', 'interpreter', 'latex', 'fontsize', 16, ...
'backgroundcolor', 'w', 'edgecolor', 'k'); % plot error for finite difference derivatives
% using pi/10 sampling period
error_forward_b = f_derivative_b - f_derivative_forward_b;
error_backward_b = f_derivative_b - f_derivative_backward_b;
error_central_b = f_derivative_b - f_derivative_central_b; figure('NumberTitle', 'off', 'Name', 'Figure 1.2.d');
set(gcf,'Color','white');
plot(x_b(1:N_b-1), error_forward_b(1:N_b-1), 'b--', ...
x_b(2:N_b), error_backward_b(2:N_b), 'r-.', ...
x_b(2:N_b-1), error_central_b(2:N_b-1), ':ms', ...
'markersize', 4, 'linewidth', 1.5);
set(gca, 'fontsize', 12, 'fontweight', 'demi');
axis([0 6*pi -0.2 0.2]); grid on;
legend('forward difference', 'backward difference', 'central difference');
xlabel('$x$', 'interpreter', 'latex', 'fontsize', 16);
ylabel('error $[f''(x)]$' , 'interpreter', 'latex', 'fontsize', 16);
text(pi, 0.15, '$\Delta x = \pi/10$' , 'interpreter', ...
'latex', 'fontsize', 16, 'backgroundcolor', 'w', 'edgecolor', 'k' );
运行结果:

上图是函数图形,看出振幅是指数衰减的。下图是一阶导数的精确值(公式计算)和三种差商近似结果。中心差商近似结果接近
精确值。

下图是在Δx=π/5采样间隔下,三种差商近似与精确值之间的误差对比。可以看出中心差商近似的误差最小。

下图是Δx=π/10采样间隔下,三种差商近似与精确值之间的误差对比。可以看出中心差商近似的误差最小。另外由于向前差商和
向后差商近似是1阶精度,中心差商近似是2阶精度,所以采样间隔由π/5变成π/10后,向前差商和向后差商近似误差变为原来的二分之一,
而中心差商近似误差变为原来的四分之一。

《FDTD electromagnetic field using MATLAB》读书笔记 Figure 1.2的更多相关文章
- 《FDTD electromagnetic field using MATLAB》读书笔记之 Figure 1.14
背景: 基于公式1.42(Ez分量).1.43(Hy分量)的1D FDTD实现. 计算电场和磁场分量,该分量由z方向的电流片Jz产生,Jz位于两个理想导体极板中间,两个极板平行且向y和z方向无限延伸. ...
- 《FDTD electromagnetic field using MATLAB》读书笔记之一阶、二阶偏导数差商近似
- 《FDTD electromagnetic field using MATLAB 》读书笔记001-差商种类
有限差分就是用差商代替微商,有3钟: 1.向前差商 2.向后差商 3.中心差商 上面三张途中虚线就是函数在x的精确微商(偏导数),直线就是用来代替精确 微商的差商格式.
- Matlab学习笔记 figure函数
Matlab学习笔记 figure函数 matlab中的 figure 命令,能够创建一个用来显示图形输出的一个窗口对象.每一个这样的窗口都有一些属性,例如窗口的尺寸.位置,等等.下面一一介绍它们. ...
- TJI读书笔记17-字符串
TJI读书笔记17-字符串 不可变的String 重载”+”和StringBuilder toString()方法的一个坑 String上的操作 格式化输出 Formatter类 字符串操作可能是计算 ...
- WPF,Silverlight与XAML读书笔记第四十三 - 多媒体支持之文本与文档
说明:本系列基本上是<WPF揭秘>的读书笔记.在结构安排与文章内容上参照<WPF揭秘>的编排,对内容进行了总结并加入一些个人理解. Glyphs对象(WPF,Silverlig ...
- 《Linux内核设计与实现》 Chapter4 读书笔记
<Linux内核设计与实现> Chapter4 读书笔记 调度程序负责决定将哪个进程投入运行,何时运行以及运行多长时间,进程调度程序可看做在可运行态进程之间分配有限的处理器时间资源的内核子 ...
- ANTLR3完全参考指南读书笔记[06]
前言 这段时间在公司忙的跟狗似的,但忙的是没多少技术含量的活儿. 终于将AST IR和tree grammar过了一遍,计划明天写完这部分的读书笔记. 内容 1 内部表示AST构建 2 树文法 ...
- 认识CLR [《CLR via C#》读书笔记]
认识CLR [<CLR via C#>读书笔记] <CLR via C#>读书笔记 什么是CLR CLR的基本概念 通用语言运行平台(Common Language Runti ...
随机推荐
- HDU1503Advanced Fruits
/*给出两串,求一个最小的字符串包含这两个子串,子串在这个字符串中的顺序不变, 做法:定义两个数组,分别标记公共部分在第一个串和第二个串中的位置,在输出是判断一下,输出一个串两个公共部分之间的部分,不 ...
- vue.js指令v-model实现方法
原文链接:http://www.jb51.net/article/99097.htm V-MODEL 是VUE 的一个指令,在input 控件上使用时,可以实现双向绑定. 通过看文档,发现他不过是一个 ...
- 存储结构简明分析——DAS、NAS和SAN
存储的总体分类 主流存储结构 网络存储结构大致分为三种:直连式存储(DAS:Direct Attached Storage).存储区域网络(SAN:Storage Area Network ...
- Redis哨兵(sentinel)
介绍 Redis的sentinel主要是用来管理多个Redis服务器,sentinel负责(1)监控主服务器和从服务器的运行状态(2)主服务器运行故障时自动切换其中一台从服务器为主服务器 Sentin ...
- pycharm同时使用python2.7版本和python3.6版本
最近在看爬虫的专题,很多爬虫的教程是python2的,电脑上装的是3.6版本,而且python不向下兼容,这就很麻烦,最简单的print要加括号啊,等等.于是分享一个在windows环境下pychar ...
- taglist-plus 安装使用
taglist 可以查看文件中的 类,函数,变量等信息. 在.vimrc中添加: Plugin 'taglist-plus' 然后打开vim编辑器 PluginInstall 使用: 打开taglis ...
- CentOS6.4_x86_120g__20160306.rar
安装的镜像包: CentOS-6.4-i386-bin-DVD1to2(CentOS-6.4-i386-bin-DVD1.iso / CentOS-6.4-i386-bin-DVD2.iso) 1. ...
- Java Minor GC和FullGC
Minor GC触发条件:当Eden区满时,触发Minor GC. Full GC触发条件: 调用System.gc时,系统建议执行Full GC,但是不必然执行 老年代空间不足 方法去空间不足 通过 ...
- angular 之路由
1.用angular-cli建一个工程自带路由怎么做? 命令:ng new 项目名 --routing 2.怎么使用路由器和路由器的一些基本使用. //html页面 <a routerLink ...
- 配置AD RMS的一点心得
基本上是按照下面的连接配置的,微软写的很好 AD RMS Step-by-Step Guide http://technet.microsoft.com/en-us/library/cc753531( ...