Description

去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了。

在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其中 表示i的约数个数。他现在长大了,题目也变难了。
求如下表达式的值:
 
其中 表示ij的约数个数。
他发现答案有点大,只需要输出模1000000007的值。

Input

第一行一个整数n。

Output

一行一个整数ans,表示答案模1000000007的值。

Sample Input

2

Sample Output

8

HINT

对于100%的数据n <= 10^9。

Solution

因为直接用编辑器打公式比较麻烦且丑,就用markdown截图完传图片了= =b。

Code

 #include <cstdio>
#include <cmath> #define R register
const int mod = 1e9 + ;
#define maxn 1500010
int miu[maxn], smiu[maxn], pr[maxn / ], prcnt, lim, N;
bool vis[maxn];
int hash[maxn];
bool vihash[];
int Miu(R int n)
{
if (n <= lim) return smiu[n];
if (vihash[N / n]) return hash[N / n]; vihash[N / n] = ;
R int ret = ;
for (R int i = , j; i <= n; i = j + )
{
j = n / (n / i);
(ret += mod - 1ll * (j - i + ) * Miu(n / i) % mod) %= mod;
}
return hash[N / n] = ret;
}
inline int sumf(R int n)
{
R int ret = ;
for (R int i = , j; i <= n; i = j + )
{
j = n / (n / i);
ret = (ret + 1ll * (j - i + ) * (n / i)) % mod;
}
return ret;
}
int main()
{
scanf("%d", &N);
lim = (int) pow(N * 1.0, 0.666);
// printf("%d\n", lim);
miu[] = smiu[] = ;
for (R int i = ; i <= lim; ++i)
{
if (!vis[i]) pr[++prcnt] = i, miu[i] = -;
smiu[i] = (smiu[i - ] + miu[i]) % mod;
for (R int j = ; j <= prcnt && 1ll * i * pr[j] <= lim; ++j)
{
vis[i * pr[j]] = ;
if (i % pr[j]) miu[i * pr[j]] = -miu[i];
else
{
miu[i * pr[j]] = ;
break;
}
}
}
R int ans = , last = ;
for (R int i = , j; i <= N; i = j + )
{
j = N / (N / i);
R int Ph = Miu(j);
R int fs = sumf(N / i);
// printf("l = %d r = %d %d %d\n", i, j, Ph, fs);
ans = (ans + 1ll * (Ph - last + mod) * fs % mod * fs) % mod;
last = Ph;
}
// printf("%d\n", last);
printf("%d\n", ans % mod);
return ;
}

【BZOJ4176】 Lucas的数论的更多相关文章

  1. BZOJ4176: Lucas的数论

    Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其 ...

  2. BZOJ4176 Lucas的数论 【莫比乌斯反演 + 杜教筛】

    题目 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i<=N", ...

  3. bzoj4176. Lucas的数论 杜教筛

    题意:求\(\sum_{i=1}^n\sum_{j=1}^nd(ij),d是约数个数函数\) 题解:首先有一个结论\(d(ij)=\sum_{x|i}\sum_{y|j}[(i,j)==1]\) 那么 ...

  4. 【BZOJ4176】Lucas的数论 莫比乌斯反演

    [BZOJ4176]Lucas的数论 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)) ...

  5. Lucas的数论题解

    Lucas的数论 reference 题目在这里> < Pre 数论分块 默认向下取整时. 形如\(\sum\limits_{i=1}^n f\left( \frac{n}{i}\righ ...

  6. Lucas的数论(math)

    Lucas的数论(math) 题目描述 去年的今日,Lucas仍然是一个热爱数学的孩子.(现在已经变成业界毒瘤了> <) 在整理以前的试题时,他发现了这么一道题目:求\(\sum\limi ...

  7. BZOJ 4176: Lucas的数论 [杜教筛]

    4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{ ...

  8. bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演

    4176: Lucas的数论 Time Limit: 30 Sec  Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么 ...

  9. bzoj 4176 Lucas的数论

    bzoj 4176 Lucas的数论 和约数个数和那题差不多.只不过那个题是多组询问,这题只询问一次,并且 \(n\) 开到了 \(10^9\). \[ \begin{align*} \sum_{i= ...

  10. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

随机推荐

  1. Docker——网络和存储(数据卷)

    iptables -t nat -vnL |grep docker 查看docker桥接网卡:brctl show 本地端口随机映射到docker容器的80端口上: docker run -d -P ...

  2. 区间dp 括号匹配问题

    这道题目能用区间dp来解决,是因为一个大区间的括号匹配数是可以由小区间最优化选取得到(也就是满足最优子结构) 然后构造dp 既然是区间类型的dp 一般用二维 我们定义dp[i][j] 表示i~j这个区 ...

  3. id和class的区别

    id和class是定义css样式用到的,不同的是定义样式时的写法不一样,使用id选择样式时,定义的格式为 #main{width:20px;} ,使用class时用到的是 .main{width:20 ...

  4. Asp.Net Core 中间件

    什么是中间件(Middleware)? 中间件是组装到应用程序管道中以处理请求和响应的软件. 每个组件: 选择是否将请求传递给管道中的下一个组件. 可以在调用管道中的下一个组件之前和之后执行工作. 请 ...

  5. NET Core:搭建私有Nuget服务器以及打包发布Nuget包

    docker 安装 https://www.cnblogs.com/liuxiaoji/p/11014329.html 1.使用docker搭建私有Nuget服务器 docker run -d -p ...

  6. Zend 3.3.0安装 ZendOptimizer 3.3.0 for Windows 稳定版 下载

    用的某php网站系统今天打开时乱码了(zend 200407...),但phpmyadmin能正常使用: 搜索下,重新安装zend可以解决,系统上原来的版本是Zend 3.3.0:下了个,安装后果然把 ...

  7. Oracle连接字符串总结(转)

    Oracle XE 标准连接 Oracle XE(或者"Oracle Database 10g Express Edition")是一个简单免费发布的版本. 以下是语法格式: Dr ...

  8. spring注解定时器

    上一篇文章写了一个在配置文件中设置时间的定时器,现在来写一个注解方式的定时器: 1.工程结构如下: 2.需要执行的代码块: package com.Task; import org.springfra ...

  9. OpenStreetMap全球库

    https://www.loveyu.org/5344.html https://www.jianshu.com/p/957aa4a933d7 https://blog.csdn.net/mrib/a ...

  10. go语言中获取变量类型的三种方法

    package main import ( "fmt" "reflect" ) func main() { var num float64 = 3.14 // ...