【CUDA 基础】3.3 并行性表现
title: 【CUDA 基础】3.3 并行性表现
categories:
- CUDA
- Freshman
tags:
- nvprof
toc: true
date: 2018-04-15 21:17:52

Abstract: 本文主要通过nvprof工具来分析核函数的执行效率(资源利用率)
Keywords: nvprof
开篇废话
继续更新CUDA,前面为了加速概率论的学习停了一段CUDA,从今天开始继续CUDA和数学分析的更新,每一篇都写一点废话就相当于自己的日记了,之前很佩服那些写日记的人,因为根本不知道日记可以写些什么,但是现在看看,如果写一些文字记录自己,首先可以反思当下,其次是过一段时间以后可以看看自己到底有没有进步,这些都是有用的,所以大家可以略过我的废话,直接看正文。
本文的主要内容就是进一步理解线程束在硬件上执行的本质过程,结合上几篇关于执行模型的学习,本文相对简单,通过修改核函数的配置,来观察核函数的执行速度,以及分析硬件利用数据,分析性能,调整核函数配置是CUDA开发人员必须掌握的技能,本篇只研究对核函数的配置是如何影响效率的(也就是通过网格,块的配置来获得不同的执行效率。)
本文全文只用到下面的核函数
__global__ void sumMatrix(float * MatA,float * MatB,float * MatC,int nx,int ny)
{
int ix=threadIdx.x+blockDim.x*blockIdx.x;
int iy=threadIdx.y+blockDim.y*blockIdx.y;
int idx=ix+iy*ny;
if (ix<nx && iy<ny)
{
MatC[idx]=MatA[idx]+MatB[idx];
}
}
没有任何优化的最简单的二维矩阵加法。
全部代码:
int main(int argc,char** argv)
{
//printf("strating...\n");
//initDevice(0);
int nx=1<<13;
int ny=1<<13;
int nxy=nx*ny;
int nBytes=nxy*sizeof(float);
//Malloc
float* A_host=(float*)malloc(nBytes);
float* B_host=(float*)malloc(nBytes);
float* C_host=(float*)malloc(nBytes);
float* C_from_gpu=(float*)malloc(nBytes);
initialData(A_host,nxy);
initialData(B_host,nxy);
//cudaMalloc
float *A_dev=NULL;
float *B_dev=NULL;
float *C_dev=NULL;
CHECK(cudaMalloc((void**)&A_dev,nBytes));
CHECK(cudaMalloc((void**)&B_dev,nBytes));
CHECK(cudaMalloc((void**)&C_dev,nBytes));
CHECK(cudaMemcpy(A_dev,A_host,nBytes,cudaMemcpyHostToDevice));
CHECK(cudaMemcpy(B_dev,B_host,nBytes,cudaMemcpyHostToDevice));
int dimx=argc>2?atoi(argv[1]):32;
int dimy=argc>2?atoi(argv[2]):32;
double iStart,iElaps;
// 2d block and 2d grid
dim3 block(dimx,dimy);
dim3 grid((nx-1)/block.x+1,(ny-1)/block.y+1);
iStart=cpuSecond();
sumMatrix<<<grid,block>>>(A_dev,B_dev,C_dev,nx,ny);
CHECK(cudaDeviceSynchronize());
iElaps=cpuSecond()-iStart;
printf("GPU Execution configuration<<<(%d,%d),(%d,%d)|%f sec\n",
grid.x,grid.y,block.x,block.y,iElaps);
CHECK(cudaMemcpy(C_from_gpu,C_dev,nBytes,cudaMemcpyDeviceToHost));
cudaFree(A_dev);
cudaFree(B_dev);
cudaFree(C_dev);
free(A_host);
free(B_host);
free(C_host);
free(C_from_gpu);
cudaDeviceReset();
return 0;
}
可见我们用两个 8192×81928192\times 81928192×8192 的矩阵相加来测试我们效率。
注意一下这里的GPU内存,一个矩阵是 213×213×22=2282^{13}\times 2^{13}\times 2^2=2^{28}213×213×22=228 字节 也就是 256M,三个矩阵就是 768M 因为我们的GPU内存就是 2G 的,所以我们没办法进行更大的矩阵计算了(无法使用原文使用的是 2142^{14}214 的方矩阵)。
用 nvprof 检测活跃的线程束
完整内容https://face2ai.com/CUDA-F-3-3-并行性表现/
【CUDA 基础】3.3 并行性表现的更多相关文章
- 【CUDA 基础】6.2 并发内核执行
title: [CUDA 基础]6.2 并发内核执行 categories: - CUDA - Freshman tags: - 流 - 事件 - 深度优先 - 广度优先 - 硬件工作队列 - 默认流 ...
- 【CUDA 基础】3.4 避免分支分化
- title: [CUDA 基础]3.4 避免分支分化 categories: - CUDA - Freshman tags: - 规约问题 - 分支分化 toc: true date: 2018- ...
- CUDA基础介绍
一.GPU简介 1985年8月20日ATi公司成立,同年10月ATi使用ASIC技术开发出了第一款图形芯片和图形卡,1992年4月ATi发布了Mach32图形卡集成了图形加速功能,1998年4月ATi ...
- 【CUDA 基础】6.5 流回调
title: [CUDA 基础]6.5 流回调 categories: - CUDA - Freshman tags: - 流回调 toc: true date: 2018-06-20 21:56:1 ...
- 【CUDA 基础】6.3 重叠内和执行和数据传输
title: [CUDA 基础]6.3 重叠内和执行和数据传输 categories: - CUDA - Freshman tags: - 深度优先 - 广度优先 toc: true date: 20 ...
- 【CUDA 基础】6.1 流和事件概述
title: [CUDA 基础]6.1 流和事件概述 categories: - CUDA - Freshman tags: - 流 - 事件 toc: true date: 2018-06-10 2 ...
- 【CUDA 基础】6.0 流和并发
title: [CUDA 基础]6.0 流和并发 categories: - CUDA - Freshman tags: - 流 - 事件 - 网格级并行 - 同步机制 - NVVP toc: tru ...
- 【CUDA 基础】5.6 线程束洗牌指令
title: [CUDA 基础]5.6 线程束洗牌指令 categories: - CUDA - Freshman tags: - 线程束洗牌指令 toc: true date: 2018-06-06 ...
- 【CUDA 基础】5.4 合并的全局内存访问
title: [CUDA 基础]5.4 合并的全局内存访问 categories: - CUDA - Freshman tags: - 合并 - 转置 toc: true date: 2018-06- ...
随机推荐
- Make It One CodeForces - 1043F (数论,最短路,好题)
大意: 给定序列$a$, 求最小子集, 使得gcd为1. 对于数$x$, 素因子多少次幂是无关紧要的, 这样就可以用一个二进制数来表示. $x$取$gcd$后的二进制状态最多$2^7$, 可以暴力枚举 ...
- 打印从1到最大的n位数(考虑大数问题)
void Print1ToMaxOfNDigits(int n) { if(n <= 0) { return; } int * number = new int[n]; for(int i = ...
- 【Git的基本操作二】添加、提交、查看状态
添加.提交.查看状态操作 查看状态: git status
- 绑定css样式,点击高亮
<div class="flex-lay" style="color:#999"> <div bindtap="changeType ...
- 1 sql server 中cursor的简介
1.游标的分类 游标共有3类:API服务器游标.Transaction-SQL游标和API客户端游标. 2 API服务器cursor共有如下几种 静态游标的完整结果集将打开游标时建立的结果集存储在临时 ...
- python之时间日期calendar
calendar是与日历相关的模块,calendar模块文件里定义了很多类型,主要有Calendar,TextCalendar以及HTMLCalendar类型.其中,Calendar是TextCale ...
- canvas签名
<template> <div class="share" style="background:#fff"> <div class ...
- 《浏览器工作原理与实践》<01>Chrome架构:仅仅打开了1个页面,为什么有4个进程?
无论你是想要设计高性能 Web 应用,还是要优化现有的 Web 应用,你都需要了解浏览器中的网络流程.页面渲染过程,JavaScript 执行流程,以及 Web 安全理论,而这些功能是分散在浏览器的各 ...
- SDU&PDU
SDU(service Data Unit):服务数据单元,又叫业务数据单元,是指定层的用户服务的数据集,传送到接收方的时候同一协议层时数据没有发生变化,即业务部分,然后发给下层之后,下层将其封装在P ...
- PAT Basic 1092 最好吃的月饼 (20 分)
月饼是久负盛名的中国传统糕点之一,自唐朝以来,已经发展出几百品种. 若想评比出一种“最好吃”的月饼,那势必在吃货界引发一场腥风血雨…… 在这里我们用数字说话,给出全国各地各种月饼的销量,要求你从中找出 ...