此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面。对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献。有一些刚刚出版的文章,个人非常喜欢,也列出来了。

33. SIFT
关于SIFT,实在不需要介绍太多,一万多次的引用已经说明问题了。SURF和PCA-SIFT也是属于这个系列。后面列出了几篇跟SIFT有关的问题。
[1999 ICCV] Object recognition from local scale-invariant features
[2000 IJCV] Evaluation of Interest Point Detectors
[2006 CVIU] Speeded-Up Robust Features (SURF)
[2004 CVPR] PCA-SIFT A More Distinctive Representation for Local Image Descriptors
[2004 IJCV] Distinctive Image Features from Scale-Invariant Keypoints
[2010 IJCV] Improving Bag-of-Features for Large Scale Image Search
[2011 PAMI] SIFTflow Dense Correspondence across Scenes and its Applications

翻译

兴趣点检测器的评估——http://tongtianta.site/paper/56807

作者:

摘要 -

Computer Vision_33_SIFT:Evaluation of Interest Point Detectors——2000的更多相关文章

  1. Computer Vision_33_SIFT:TILDE: A Temporally Invariant Learned DEtector——2014

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  2. Computer Vision_33_SIFT:SAR-SIFT: A SIFT-LIKE ALGORITHM FOR SAR IMAGES——2015

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  3. Computer Vision_33_SIFT:Distinctive Image Features from Scale-Invariant Keypoints——2004

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  4. Computer Vision_33_SIFT:PCA-SIFT A More Distinctive Representation for Local Image Descriptors——2004

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  5. Computer Vision_33_SIFT:Speeded-Up Robust Features (SURF)——2006

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  6. Computer Vision_33_SIFT:Object recognition from local scale-invariant features——1999

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  7. Computer Vision_33_SIFT: A novel point-matching algorithm based on fast sample consensus for image registration——2015

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  8. Computer Vision_33_SIFT:Fast Adaptive Bilateral Filtering——2018

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  9. Computer Vision_33_SIFT:A novel coarse-to-fine scheme for automatic image registration based on SIFT and mutual information——2014

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

随机推荐

  1. kubenetes创建一个pod应用

    Pod是可以创建和管理Kubernetes计算的最小可部署单元.一个Pod代表着集群中运行的一个进程.每个pod都有一个唯一的ip. 一个pod类似一个豌豆荚,包含一个或多个容器(通常是docker) ...

  2. 浏览器打印出一段unicode码,汉字无法正常显示

    处理办法:http://tool.chinaz.com/tools/unicode.aspx:unicode转中文就可以啦

  3. 基于Spark的用户分析系统

    https://blog.csdn.net/ytbigdata/article/details/47154529

  4. 一种可以避免数据迁移的分库分表scale-out扩容模式

    转自: http://jm.taobao.org/ 一种可以避免数据迁移的分库分表scale-out扩容方式 目前绝大多数应用采取的两种分库分表规则 mod方式 dayofweek系列日期方式(所有星 ...

  5. Spring Boot中一个Servlet主动断开连接的方法

    主动断开连接,从而返回结果给客户端,并且能够继续执行剩余代码. 对于一个HttpServletResponse类型的对象response来说,执行如下代码: response.getWriter(). ...

  6. 李宗盛 linux罚写

    1.system v init运行级别及作用 init运行级别 作用 0 关机 1 单用户模式 2 多用户的文本界面 3 多用户的文本界面 4 多用户的文本界面 5 多用户的图形界面 6 重启 eme ...

  7. 【VS开发】【数据库开发】windows下libevent x64库静态编译

    按照libevent的文档,使用VC的nmake -f Makefile.nmake即可编译32位release模式.因为项目中要求编译64位的版本,需要在Makefile.nmake中添加一个LIB ...

  8. ES6 中 let 和 const 总结

    目录 let const 1. let要好好用 1. 基本用法 2. let声明的变量不存在变量提升 3. TDZ(temporal dead zone)暂时性死区 4. 不允许重复声明 2. 块级作 ...

  9. Spring jsp 验证 form:errors标签

    1 在model层添加验证规则 @NotNull @Size(min=2,max =30,message="姓名在2-30个字符之间") private String userna ...

  10. eNSP——利用三层交换机实现VLAN间路由

    原理: VLAN将一个物理的LAN在逻辑上划分成多个广播域.VLAN内的主机间可以直接通信,而VLAN间不能直接互通. 在现实网络中,经常会遇到需要跨VLAN相互访问的情况,工程师通常会选择一些方法来 ...