Spark(二)算子讲解

@

一、wordcountcount

基于上次的wordcount,我们来写一个wordcountcount,来对wc程序进行第二次计数,我们来分析一下性能。

package com.littlepage.wc

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object WordCount {
def main(args: Array[String]): Unit = {
val conf=new SparkConf().setAppName("wc").setMaster("local")
val sparkContext=new SparkContext(conf)
sparkContext.setLogLevel("error")
val fileRDD:RDD[String] = sparkContext.textFile("data/data")
val words:RDD[String] = fileRDD.flatMap(_.split(" "))
val pairWord:RDD[(String,Int)] = words.map((_,1))
val res:RDD[(String,Int)] = pairWord.reduceByKey(_+_)
println("wordcount:")
res.foreach(println)
val rev:RDD[(Int,Int)] = res.map((x)=>{(x._2,1)})
val pl:RDD[(Int,Int)] = rev.reduceByKey(_+_)
println("\nwordcountcount")
pl.foreach(println)
Thread.sleep(100000000)
}
}

通过性能图,我们可以知道:

1.Spark如果不对其结果进行存储或输出,那么Spark将不会处理map或者reduce操作

2.如果进行重复输出,共用的map或者reduce操作只执行一次

3.默认如果产生一次shuffle是去查看图表的一次拐弯,为了尽量减少性能的消耗,编写程序时应该尽量减少shuffle的次数

二、编程模型

Spark编程模型和MapReduce相比,Spark可以多个Job,多个State进行执行。

源码部分参考视频

三、RDD数据集和算子的使用

1.三个必备算子

我们在写一个Spark程序中,不可避免的算子有三个,创建算子,转换算子,收集算子。

创建算子可以创建一个RDD数据集,这个创建可以在内存中(集合容器),也可以在硬盘中(文件)获取

转换算子可以处理一个RDD数据集,即map和reduce操作,都算做转换算子。

收集算子我们在写一个RDD数据集的时候,必须使用收集算子进行收集,否则不会触发shuffle。

示例,三个算子写一个过滤数字程序。

package com.littlepage

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object demo2 {
def main(args: Array[String]): Unit = {
val conf=new SparkConf().setAppName("demo2").setMaster("local")
val sc=new SparkContext(conf)
sc.setLogLevel("error")
val dataRDD: RDD[Int] = sc.parallelize(List(1,2,3,4,5,6,7,6,5,4,3,2,1))//创建算子
val filterRDD: RDD[Int] = dataRDD.filter(_>3)//转换算子
val ints:Array[Int] = filterRDD.collect()//收集算子
Thread.sleep(100000)
}
}
package com.littlepage

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object demo2 {
def main(args: Array[String]): Unit = {
val conf=new SparkConf().setAppName("demo2").setMaster("local")
val sc=new SparkContext(conf)
sc.setLogLevel("error")
val dataRDD: RDD[Int] = sc.parallelize(List(1,2,3,4,5,6,7,6,5,4,3,2,1))//创建算子
val filterRDD: RDD[Int] = dataRDD.filter(_>3)//转换算子
val ints:Array[Int] = filterRDD.collect()//收集算子
Thread.sleep(100000)
}
}
2.常见算子(交并差笛卡尔,cogroup,join)

2.1.union算子

将两个数据集合并为一个数据集,直接合并,不会产生shuffle

object union {
def main(args: Array[String]): Unit = {
val sc=new SparkContext(new SparkConf().setMaster("local").setAppName("union"))
sc.setLogLevel("error")
val rdd1:RDD[Int] = sc.parallelize(List(1,2,3,4,6,7))
val rdd2:RDD[Int] = sc.parallelize(List(2,3,4,5))
val uniondata = rdd1.union(rdd2)
uniondata.foreach(print)
Thread.sleep(100000)
}
}

2.2.intersection算子

将2个数据集取交集,产生一个shuffle

val interdata:RDD[Int] = rdd1.intersection(rdd2)

2.3.substract算子

将2个数据集取差集,产生一个shuffle

val subdata:RDD[Int] = rdd1.substract(rdd2)

2.4.cartesian算子

将2个数据集取笛卡尔积,不产生shuffle

val cartesiandata:RDD[Int] = rdd1.cartesian(rdd2)

2.5.cogroup算子

两个分组进行,key作为结果的key,value集合进行一个二元祖,包含两个分区的元素,产生一个shuffle。

val rdd1:RDD[(String,Int)] = sc.parallelize(List(
("zhangsan",11),
("zhangsan",12),
("lisi",13),
("wangwu",14)
));
val rdd2:RDD[(String,Int)] = sc.parallelize(List(
("zhangsan",21),
("zhangsan",22),
("lisi",23),
("zhaoliu",28)
))
val cogroupdata:RDD[(String,(Iterable[Int],Iterable[Int]))] = rdd1.cogroup(rdd2)

6.join,leftOuterJoin,rightOuterJoin,fullOuterJoin算子

val joindata:RDD[(String,(Int,Int))] = rdd1.join(rdd2)
val leftdata:RDD[(String,(Int,Option[Int]))] = rdd1.leftOuterJoin(rdd2)
val rightdata:RDD[(String,(Option[Int],Int))] = rdd2.rightOuterJoin(rdd2)
val fulldata:RDD[(String,(Option[Int],Option[Int]))] = rdd1.fullOuterJoin(rdd2)
3.排序和聚合计算

3.1.swap算子

将一个k-v数据集的key和value交换,用法

data.map(_.swap)

3.2.sort算子

sort算子可以将按照key进行全排序

data.sortByKey()

3.3.take算子

获得数据的前n个,n为一个整型

data.take(n)

3.4.distinct去重

去除key相同的

val keys:RDD[(String,String) = map.distinct()

Spark(二)算子详解的更多相关文章

  1. Spark:常用transformation及action,spark算子详解

    常用transformation及action介绍,spark算子详解 一.常用transformation介绍 1.1 transformation操作实例 二.常用action介绍 2.1 act ...

  2. ViewPager 详解(二)---详解四大函数

    前言:上篇中我们讲解了如何快速实现了一个滑动页面,但问题在于,PageAdapter必须要重写的四个函数,它们都各有什么意义,在上节的函数内部为什么要这么实现,下面我们就结合Android的API说明 ...

  3. iOS 开发之照片框架详解之二 —— PhotoKit 详解(下)

    本文链接:http://kayosite.com/ios-development-and-detail-of-photo-framework-part-three.html 这里接着前文<iOS ...

  4. iOS 开发之照片框架详解之二 —— PhotoKit 详解(上)

    转载自:http://kayosite.com/ios-development-and-detail-of-photo-framework-part-two.html 一. 概况 本文接着 iOS 开 ...

  5. 详解C#泛型(二) 获取C#中方法的执行时间及其代码注入 详解C#泛型(一) 详解C#委托和事件(二) 详解C#特性和反射(四) 记一次.net core调用SOAP接口遇到的问题 C# WebRequest.Create 锚点“#”字符问题 根据内容来产生一个二维码

    详解C#泛型(二)   一.自定义泛型方法(Generic Method),将类型参数用作参数列表或返回值的类型: void MyFunc<T>() //声明具有一个类型参数的泛型方法 { ...

  6. Hexo系列(二) 配置文件详解

    Hexo 是一款优秀的博客框架,在使用 Hexo 搭建一个属于自己的博客网站后,我们还需要对其进行配置,使得 Hexo 更能满足自己的需求 这里所说的配置文件,是位于站点根目录下的 _config.y ...

  7. 【模型推理】量化实现分享二:详解 KL 对称量化算法实现

      欢迎关注我的公众号 [极智视界],回复001获取Google编程规范   O_o   >_<   o_O   O_o   ~_~   o_O   大家好,我是极智视界,本文剖析一下 K ...

  8. Struts2学习笔记二 配置详解

    Struts2执行流程 1.简单执行流程,如下所示: 在浏览器输入请求地址,首先会被过滤器处理,然后查找主配置文件,然后根据地址栏中输入的/hello去每个package中查找为/hello的name ...

  9. Apache Spark 内存管理详解(转载)

    Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色.理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优.本文旨在梳理出 ...

  10. EventBus (二) 使用详解——EventBus使用进阶

    相关文章: 1.<EventBus使用详解(一)——初步使用EventBus> 2.<EventBus使用详解(二)——EventBus使用进阶> 一.概述 前一篇给大家装简单 ...

随机推荐

  1. 第一章 Shiro简介——《跟我学Shiro》

    转发地址:https://www.iteye.com/blog/jinnianshilongnian-2018936 目录贴:跟我学Shiro目录贴 1.1  简介 Apache Shiro是Java ...

  2. .rpt 文件怎麽打開?Crystal Reports 打開.rpt失敗 ?

    .rpt   是SAP Crystal Reports 製作出來的檔案的後綴名, 可以通過 SAP Crystal Reports Viewer 打開,也可以直接用記事本(notepad / Note ...

  3. 斑马打印机和欧姆龙CP1H串口通信打印

    欧姆龙CP1HPLC和斑马打印机通信 1. PLC 1.1PLC型号 CP1H 1.2通信方式 232通信,使用232扩展卡槽CP1W-CIF01. CP1W-CIF01是RS232选件板,通信距离最 ...

  4. iostat的坑

    简单使用iostat查询io使用量,会让你看不懂所以然,因为很多人疏忽了这个命令查到的结果根本不是实际值,需要注意的是一句话: “第1次采样信息与单独执行iostat的效果一样,为从系统开机到当前执行 ...

  5. python 计算文件夹里所有内容的大小总和

    计算文件夹里所有内容的大小总和 递归方法 '''计算文件夹的大小''' import os def dir_file_size(path): if os.path.isdir(path): file_ ...

  6. SSRAM、SDRAM和Flash简要介绍

    问题1:什么是DRAM.SRAM.SDRAM?答:名词解释如下DRAM--------动态随即存取器,需要不断的刷新,才能保存数据,而且是行列地址复用的,许多都有页模式SRAM--------静态的随 ...

  7. js 数组去重、去空(收藏)

    function unique (arr) { return Array.from(new Set(arr)) } var arr = [1,1,'true','true',true,true,15, ...

  8. if("\v"=="v")来判断IE浏览器

    if(!+"\v1"){ IE代码}else{ 其他浏览器代码} if("\v"=="v"){//true为IE浏览器, document. ...

  9. java23种设计模式之九: 抽象工厂方法模式

    一.抽象工厂定义 上一讲我们说了一下工厂方法,那么我们如何对工厂进行抽象. 因为工厂是生产产品的,现在我们需要工厂抽象,只生产抽象产品,不生产具体的产品,这同时也体现了java的多态. 现在有2个抽象 ...

  10. python之文件读写操作笔记

    对不同类的文件操作,需要调用相关的库文件,一般情况下,可以选择建立:写文件函数和读文件函数.在写文件与读文件函数中 我们可以采用:with  open('文件名','w', encoding='utf ...