使用深度学习模型时当然希望可以保存下训练好的模型,需要的时候直接调用,不再重新训练

一、保存模型到本地

以mnist数据集下的AutoEncoder 去噪为例。添加:

file_path="MNIST_data/weights-improvement-{epoch:02d}-{val_loss:.2f}.hdf5"

tensorboard = TensorBoard(log_dir='/tmp/tb', histogram_freq=0, write_graph=False)
checkpoint = ModelCheckpoint(filepath=file_path,verbose=1,monitor='val_loss', save_weights_only=False,mode='auto' ,save_best_only=True,period=1)
autoencoder.fit(x_train_noisy, x_train,
epochs=100,
batch_size=128,
shuffle=True,
validation_data=(x_test_noisy, x_test),
callbacks=[checkpoint,tensorboard])

这里的tensorboard和checkpoint分别是

1、启用tensorboard可视化工具,新建终端使用tensorboard --logdir=/tmp/tb 命令

2、保存ModelCheckpoint到MNIST_data/文件夹下,这里的参数设置为观察val_loss ,当有提升时保存一次模型,如下

二、从本地读取模型

假设读取模型后使用三个图片做去噪实验:(测试的图片数量修改 pic_num )

import os
import numpy as np
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
import matplotlib.pyplot as plt
from keras.models import Model,Sequential,load_model
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.preprocessing.image import ImageDataGenerator,img_to_array, load_img
from keras.callbacks import TensorBoard , ModelCheckpoint
print("_________________________keras start_____________________________")
pic_num = 3
base_dir = 'MNIST_data' #基准目录
train_dir = os.path.join(base_dir,'my_test') #train目录
validation_dir="".join(train_dir)
test_datagen = ImageDataGenerator(rescale= 1./255)
validation_generator = test_datagen.flow_from_directory(validation_dir,
target_size = (28,28),
color_mode = "grayscale",
batch_size = pic_num,
class_mode = "categorical")#利用test_datagen.flow_from_directory(图像地址,目标size,批量数目,标签分类情况)
for x_train,batch_labels in validation_generator:
break
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))
y_train = x_train # create model
model = load_model('MNIST_data/my_model.hdf5')
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print("Created model and loaded weights from file") # estimate accuracy on whole dataset using loaded weights
y_train=model.predict(x_train) n = pic_num
for i in range(n):
ax = plt.subplot(2, n, i+1)
plt.imshow(x_train[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax = plt.subplot(2, n, i+1+n)
plt.imshow(y_train[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()

迭代67次效果:

参考:

https://keras-zh.readthedocs.io/getting-started/faq/#_3

https://keras-zh.readthedocs.io/models/model/#predict

https://cloud.tencent.com/developer/article/1049579

Keras学习笔记二:保存本地模型和调用本地模型的更多相关文章

  1. [Firefly引擎][学习笔记二][已完结]卡牌游戏开发模型的设计

    源地址:http://bbs.9miao.com/thread-44603-1-1.html 在此补充一下Socket的验证机制:socket登陆验证.会采用session会话超时的机制做心跳接口验证 ...

  2. asp.net MVC日志插件Log4Net学习笔记二:保存日志到sqlserver的配置

    1.写到sqlserver的配置: <!--保存到SQLSERVER数据库日志--> <log4net> <appender name="AdoNetAppen ...

  3. Django学习笔记二

    Django学习笔记二 模型类,字段,选项,查询,关联,聚合函数,管理器, 一 字段属性和选项 1.1 模型类属性命名限制 1)不能是python的保留关键字. 2)不允许使用连续的下划线,这是由dj ...

  4. Keras学习笔记——Hello Keras

    最近几年,随着AlphaGo的崛起,深度学习开始出现在各个领域,比如无人车.图像识别.物体检测.推荐系统.语音识别.聊天问答等等.因此具备深度学习的知识并能应用实践,已经成为很多开发者包括博主本人的下 ...

  5. amazeui学习笔记二(进阶开发5)--Web 组件开发规范Rules

    amazeui学习笔记二(进阶开发5)--Web 组件开发规范Rules 一.总结 1.见名知意:见那些class名字知意,见函数名知意,见文件名知意 例如(HISTORY.md Web 组件更新历史 ...

  6. 纯JS实现KeyboardNav(学习笔记)二

    纯JS实现KeyboardNav(学习笔记)二 这篇博客只是自己的学习笔记,供日后复习所用,没有经过精心排版,也没有按逻辑编写 这篇主要是添加css,优化js编写逻辑和代码排版 GitHub项目源码 ...

  7. AJax 学习笔记二(onreadystatechange的作用)

    AJax 学习笔记二(onreadystatechange的作用) 当发送一个请求后,客户端无法确定什么时候会完成这个请求,所以需要用事件机制来捕获请求的状态XMLHttpRequest对象提供了on ...

  8. JMX学习笔记(二)-Notification

    Notification通知,也可理解为消息,有通知,必然有发送通知的广播,JMX这里采用了一种订阅的方式,类似于观察者模式,注册一个观察者到广播里,当有通知时,广播通过调用观察者,逐一通知. 这里写 ...

  9. java之jvm学习笔记二(类装载器的体系结构)

    java的class只在需要的时候才内转载入内存,并由java虚拟机的执行引擎来执行,而执行引擎从总的来说主要的执行方式分为四种, 第一种,一次性解释代码,也就是当字节码转载到内存后,每次需要都会重新 ...

随机推荐

  1. vue.js对列表进行编辑未保存随时变更

    1.不要建立在同一vm对象下 2.使用深拷贝$.extend(true, vm.model, obj); 3.开新标签页

  2. C#异步编程学习笔记之-async和await

    一.异步方法介绍(async和await):如果使用async修饰符将某种方法指定为异步方法,即启用以下两种功能.1.标记的异步方法可以使用await来指定暂停点.await运算符通知编译器异步方法: ...

  3. 409 Conflict - PUT https://registry.npm.taobao.org/-/user/org.couchdb.user:zphtown - [conflict] User xxx already exists

    解决方法cmd执行 npm config set registry https://registry.npmjs.org/ 为什么,参考此文档:https://blog.csdn.net/adc_go ...

  4. OSCP-FristiLeaks

    环境搭建 靶机下载: https://www.vulnhub.com/entry/fristileaks-13,133/ 安装:直接用virtualbox打开 网络桥接 找到靶机IP 虚拟机启动就显示 ...

  5. Invalid prop: custom validator check failed for prop "pagerCount"

    在element分页中使用pager-count报错: vue.esm.js?c5de:628 [Vue warn]: Invalid prop: custom validator check fai ...

  6. ssh登录缓慢,使用ssh -v登录后,显示在 “pledge: network” 处卡顿:

    当登录一台服务器时,每次输入密码之后都要等很久才会得到命令提示符,尝试修改了sshd_config中的UseDNS no,但效果依然不好. ssh -v 192.168.12.43 This is p ...

  7. ath6kl 架构

    转:http://blog.csdn.net/robertsong2004/article/details/38899415 AR600x软件被划分为主机端和目标端软件.主机端软件或驱动程序的代码被提 ...

  8. go语言在Windows系统下编译成linux系统可执行文件

    package main import ( "fmt" "os" "os/exec" ) //filepath: 要编译的文件的路径 fun ...

  9. mysql数据库:mysql初识

      1.什么是数据库 *****    存放数据的仓库    已学习的文件操作的缺陷        1.IO操作 效率问题        2.多用户竞争数据        3.网络访问        ...

  10. httpleaks及url的小技巧(http:evil)

    HTTP Leak攻击简介 当前Web技术下包含了大量HTML元素和属性,这些HTML元素和属性会请求一些外部资源,而在它们的HTTP请求过程中,可能存在潜在的敏感信息泄露.为此,德国著名网络安全公司 ...