Keras学习笔记二:保存本地模型和调用本地模型
使用深度学习模型时当然希望可以保存下训练好的模型,需要的时候直接调用,不再重新训练
一、保存模型到本地
以mnist数据集下的AutoEncoder 去噪为例。添加:
file_path="MNIST_data/weights-improvement-{epoch:02d}-{val_loss:.2f}.hdf5"
tensorboard = TensorBoard(log_dir='/tmp/tb', histogram_freq=0, write_graph=False)
checkpoint = ModelCheckpoint(filepath=file_path,verbose=1,monitor='val_loss', save_weights_only=False,mode='auto' ,save_best_only=True,period=1)
autoencoder.fit(x_train_noisy, x_train,
epochs=100,
batch_size=128,
shuffle=True,
validation_data=(x_test_noisy, x_test),
callbacks=[checkpoint,tensorboard])
这里的tensorboard和checkpoint分别是
1、启用tensorboard可视化工具,新建终端使用tensorboard --logdir=/tmp/tb 命令
2、保存ModelCheckpoint到MNIST_data/文件夹下,这里的参数设置为观察val_loss ,当有提升时保存一次模型,如下


二、从本地读取模型
假设读取模型后使用三个图片做去噪实验:(测试的图片数量修改 pic_num )
import os
import numpy as np
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
import matplotlib.pyplot as plt
from keras.models import Model,Sequential,load_model
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.preprocessing.image import ImageDataGenerator,img_to_array, load_img
from keras.callbacks import TensorBoard , ModelCheckpoint
print("_________________________keras start_____________________________")
pic_num = 3
base_dir = 'MNIST_data' #基准目录
train_dir = os.path.join(base_dir,'my_test') #train目录
validation_dir="".join(train_dir)
test_datagen = ImageDataGenerator(rescale= 1./255)
validation_generator = test_datagen.flow_from_directory(validation_dir,
target_size = (28,28),
color_mode = "grayscale",
batch_size = pic_num,
class_mode = "categorical")#利用test_datagen.flow_from_directory(图像地址,目标size,批量数目,标签分类情况)
for x_train,batch_labels in validation_generator:
break
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))
y_train = x_train # create model
model = load_model('MNIST_data/my_model.hdf5')
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print("Created model and loaded weights from file") # estimate accuracy on whole dataset using loaded weights
y_train=model.predict(x_train) n = pic_num
for i in range(n):
ax = plt.subplot(2, n, i+1)
plt.imshow(x_train[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax = plt.subplot(2, n, i+1+n)
plt.imshow(y_train[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
迭代67次效果:

参考:
https://keras-zh.readthedocs.io/getting-started/faq/#_3
https://keras-zh.readthedocs.io/models/model/#predict
https://cloud.tencent.com/developer/article/1049579
Keras学习笔记二:保存本地模型和调用本地模型的更多相关文章
- [Firefly引擎][学习笔记二][已完结]卡牌游戏开发模型的设计
源地址:http://bbs.9miao.com/thread-44603-1-1.html 在此补充一下Socket的验证机制:socket登陆验证.会采用session会话超时的机制做心跳接口验证 ...
- asp.net MVC日志插件Log4Net学习笔记二:保存日志到sqlserver的配置
1.写到sqlserver的配置: <!--保存到SQLSERVER数据库日志--> <log4net> <appender name="AdoNetAppen ...
- Django学习笔记二
Django学习笔记二 模型类,字段,选项,查询,关联,聚合函数,管理器, 一 字段属性和选项 1.1 模型类属性命名限制 1)不能是python的保留关键字. 2)不允许使用连续的下划线,这是由dj ...
- Keras学习笔记——Hello Keras
最近几年,随着AlphaGo的崛起,深度学习开始出现在各个领域,比如无人车.图像识别.物体检测.推荐系统.语音识别.聊天问答等等.因此具备深度学习的知识并能应用实践,已经成为很多开发者包括博主本人的下 ...
- amazeui学习笔记二(进阶开发5)--Web 组件开发规范Rules
amazeui学习笔记二(进阶开发5)--Web 组件开发规范Rules 一.总结 1.见名知意:见那些class名字知意,见函数名知意,见文件名知意 例如(HISTORY.md Web 组件更新历史 ...
- 纯JS实现KeyboardNav(学习笔记)二
纯JS实现KeyboardNav(学习笔记)二 这篇博客只是自己的学习笔记,供日后复习所用,没有经过精心排版,也没有按逻辑编写 这篇主要是添加css,优化js编写逻辑和代码排版 GitHub项目源码 ...
- AJax 学习笔记二(onreadystatechange的作用)
AJax 学习笔记二(onreadystatechange的作用) 当发送一个请求后,客户端无法确定什么时候会完成这个请求,所以需要用事件机制来捕获请求的状态XMLHttpRequest对象提供了on ...
- JMX学习笔记(二)-Notification
Notification通知,也可理解为消息,有通知,必然有发送通知的广播,JMX这里采用了一种订阅的方式,类似于观察者模式,注册一个观察者到广播里,当有通知时,广播通过调用观察者,逐一通知. 这里写 ...
- java之jvm学习笔记二(类装载器的体系结构)
java的class只在需要的时候才内转载入内存,并由java虚拟机的执行引擎来执行,而执行引擎从总的来说主要的执行方式分为四种, 第一种,一次性解释代码,也就是当字节码转载到内存后,每次需要都会重新 ...
随机推荐
- .NET CORE API 使用Postman中Post请求获取不到传参问题
开发中遇到个坑 记录下. 使用Postman请求core api 接口时,按之前的使用方法(form-data , x-www-form-urlencoded)怎么设置都无法访问. 最后采用raw写入 ...
- O035、Nova Suspend / Rescue 操作详解
参考https://www.cnblogs.com/CloudMan6/p/5503501.html Suspend / Resume 有时候需要长时间暂停 instance , 可以通过 S ...
- ReadWriteLock读写之间互斥吗
开发中遇到并发的问题一般会用到锁,Synchronized存在明显的一个性能问题就是读与读之间互斥:ReadWriteLock是JDK5中提供的读写分离锁.读写分离锁可以有效地帮助减少锁竞争,以提升系 ...
- vccode配合svn
先安装插件 要实现版本对比.需要先安装svn服务端 vue插件 微信小程序插件
- XSS防御和绕过2
上一篇已经总结过,这里转载一篇,备忘 0x01 常规插入及其绕过 转自https://blog.csdn.net/qq_29277155/article/details/51320064 1 Scri ...
- win10编译maskrcnn benchmark
步骤 1. 按照官网的Option1安装步骤安装 https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/INSTALL. ...
- Delphi 配置BDE数据源
樊伟胜
- 4.3. Scrapy Shell
Scrapy Shell:模拟scrapy去发送请求 Scrapy终端是一个交互终端,我们可以在未启动spider的情况下尝试及调试代码,也可以用来测试XPath或CSS表达式,查看他们的工作方式,方 ...
- java8学习之深入函数式接口与方法引用
函数式接口: 函数式接口[FunctionalInterface]是整个Lambda表达式的一个根源,换句话来说java8中的Lambda表达式要想彻底掌握,前提是要彻底理解好函数式接口,所以这次继续 ...
- java poi 读取excel内容
import org.apache.poi.hssf.usermodel.HSSFWorkbook; import org.apache.poi.ss.usermodel.Row; import or ...