题意:支持两种操作:$1.$ 查询 $[l,r]$ 每个数字出现次数的 $mex$,$2.$ 单点修改某一位置的值.

这里复习一下带修改莫队.

普通的莫队中,以左端点所在块编号为第一关键字,右端点大小为第二关键字,在带修改莫队中每一个操作都有一个时间戳,那时间戳就是第三关键字.

可以将数字先离散化,开一个桶来维护每一种数字出现的次数.

然后在移动区间时就将对应数字删除/插入.

再维护一个当前时刻,表示当前数组的状态是第 $now$ 个修改进行后的状态.

将 $now$ 一直移动到和当前询问的时间戳吻合即可.

注意:在移动时间戳的时候要换一下修改的值. 假如说原来的修改是变成 $y$,而序列中的元素为 $x$,就要将修改的元素变成 $y$.

这样在下一次经过这个时间戳的时候就会将之前改动过的值再改回来.

排序函数一定要注意:

struct query
{
int l,r,id,t;
query(int l=0,int r=0):l(l),r(r){}
bool operator<(query b) const
{
return l/B==b.l/B?(r/B==b.r/B?t<b.t:r<b.r):l<b.l;
}
}q[N];

这里千万不能写错,否则整个时间复杂度就假了~

一般来说,带修改莫队中块的大小取在 $n^{0.6666}$ 来说是比较优的.

这道题中,你发现 $mex$ 的大小不超过 $\sqrt n$,所以我们可以直接暴力求.

code:

#include <bits/stdc++.h>
#define N 300005
#define ll long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int n,m,tot,opcnt,qcnt,B,now;
int a[N],A[N],output[N],cnt[N],mex[N];
struct query
{
int l,r,id,t;
query(int l=0,int r=0):l(l),r(r){}
bool operator<(query b) const
{
return l/B==b.l/B?(r/B==b.r/B?t<b.t:r<b.r):l<b.l;
}
}q[N];
struct change
{
int p,x;
change(int p=0,int x=0):p(p),x(x){}
}c[N];
void add(int num)
{
--mex[cnt[num]];
++mex[++cnt[num]];
}
void del(int num)
{
--mex[cnt[num]];
++mex[--cnt[num]];
}
void update(int id,int t)
{
if(c[t].p>=q[id].l&&c[t].p<=q[id].r)
{
del(a[c[t].p]);
add(c[t].x);
}
swap(c[t].x, a[c[t].p]);
}
int getans()
{
int i,j;
for(i=1;mex[i]>0;++i);
return i;
}
int main()
{
int i,j,l=2,r=1;
// setIO("input");
scanf("%d%d",&n,&m);
B=pow(n,0.6666);
for(i=1;i<=n;++i)
{
scanf("%d",&a[i]);
A[++tot]=a[i];
}
for(i=1;i<=m;++i)
{
int op,a,b;
scanf("%d%d%d",&op,&a,&b);
if(op==1)
{
++qcnt;
q[qcnt]=query(a,b);
q[qcnt].id=qcnt;
q[qcnt].t=opcnt;
}
else
{
++opcnt;
c[opcnt]=change(a,b);
A[++tot]=b;
}
}
sort(A+1,A+1+tot);
for(i=1;i<=n;++i) a[i]=lower_bound(A+1,A+1+tot,a[i])-A;
for(i=1;i<=opcnt;++i) c[i].x=lower_bound(A+1,A+1+tot,c[i].x)-A;
sort(q+1,q+1+qcnt);
for(i=1;i<=qcnt;++i)
{
for(;l>q[i].l;) add(a[--l]);
for(;r<q[i].r;) add(a[++r]);
for(;l<q[i].l;) del(a[l++]);
for(;r>q[i].r;) del(a[r--]);
for(;now<q[i].t;) update(i, ++now);
for(;now>q[i].t;) update(i, now--);
output[q[i].id]=getans();
}
for(i=1;i<=qcnt;++i) printf("%d\n",output[i]);
return 0;
}

  

CF940F Machine Learning 带修改莫队的更多相关文章

  1. Codeforces 940F Machine Learning 带修改莫队

    题目链接 题意 给定一个长度为\(n\)的数组\(a\),\(q\)个操作,操作分两种: 对于区间\([l,r]\),询问\(Mex\{c_0,c_1,c_2,⋯,c_{10^9}\}\),其中\(c ...

  2. BZOJ2120 数颜色(带修改莫队)

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  3. bzoj 2120 数颜色 带修改莫队

    带修改莫队,每次查询前调整修改 #include<cstdio> #include<iostream> #include<cstring> #include< ...

  4. BZOJ2120&2453数颜色——线段树套平衡树(treap)+set/带修改莫队

    题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会像你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔. 2 ...

  5. BZOJ.2453.维护队列([模板]带修改莫队)

    题目链接 带修改莫队: 普通莫队的扩展,依旧从[l,r,t]怎么转移到[l+1,r,t],[l,r+1,t],[l,r,t+1]去考虑 对于当前所在的区间维护一个vis[l~r]=1,在修改值时根据是 ...

  6. [BZOJ4129]Haruna’s Breakfast(树上带修改莫队)

    BZOJ3585,BZOJ2120,BZOJ3757三合一. 对于树上路径问题,树链剖分难以处理的时候,就用树上带修改莫队. 这里的MEX问题,使用BZOJ3585的分块方法,平衡了时间复杂度. 剩下 ...

  7. BZOJ.3052.[WC2013]糖果公园(树上莫队 带修改莫队)

    题目链接 BZOJ 当然哪都能交(都比在BZOJ交好),比如UOJ #58 //67376kb 27280ms //树上莫队+带修改莫队 模板题 #include <cmath> #inc ...

  8. BZOJ2120数颜色(带修改莫队)

    莫队算法是一种数据结构的根号复杂度替代品,主要应用在询问[l,r]到询问[l+1,r]和[l,r+1]这两个插入和删除操作复杂度都较低的情况下.具体思想是:如果把一个询问[l,r]看做平面上的点(l, ...

  9. 【BZOJ】4129: Haruna’s Breakfast 树分块+带修改莫队算法

    [题意]给定n个节点的树,每个节点有一个数字ai,m次操作:修改一个节点的数字,或询问一条树链的数字集合的mex值.n,m<=5*10^4,0<=ai<=10^9. [算法]树分块+ ...

随机推荐

  1. Golang不会自动把slice转换成interface{}类型的slice

    目录 例子 原因 如何去实现 例子 我们时常会写一些interface,例如: type A interface{ Print() } type B struct { } func (b *B) Pr ...

  2. BZOJ3879 SvT(后缀树+虚树)

    对反串建SAM得到后缀树,两后缀的lcp就是其在后缀树上lca的len值,于是每次询问对后缀树建出虚树并统计答案即可. #include<iostream> #include<cst ...

  3. 【转载】Java枚举的使用

    枚举类型可以取代以往常量的定义方式,即将常量封装在类或接口中.此外,枚举类型还提供了安全检查功能.枚举类型本质上还是以类的形式存在. 1.使用枚举类型设置常量以往设置常量,通常将常量放置在接口中,这样 ...

  4. c# winfrom 子窗体分屏显示

    参考博客:https://blog.csdn.net/kailan818/article/details/8517126 实现代码: private void button1_Click(object ...

  5. 从零开始搭建自己的.NET Core Api框架-1目录

    https://www.cnblogs.com/RayWang/p/9216820.html 系列目录 一.  创建项目并集成swagger 1.1 创建 1.2 完善 二. 搭建项目整体架构 三. ...

  6. RE:ゼロから始める AFO 生活

    新建这篇博客的时候发现自己在NOI之后只发过两三篇博客,而且都基本上没什么实质性内容. 果然是巨大混混人啊. 本文承接上篇(不过好像烂尾了),旨在记录一些有趣(?)的内容. 12.23 北大集训过去好 ...

  7. POJ1083(Moving Tables)--简单模拟

    题目链接:http://poj.org/problem?id=1083 如图所示在一条走廊的两侧各有200个房间,现在给定一些成对的房间相互交换桌子,但是走廊每次只能通过一组搬运, 也就是说如果两个搬 ...

  8. # marshalsec使用

    开启rmi服务,恶意类放到服务上 D:\jdk_1.8\bin\java.exe -cp marshalsec-0.0.3-SNAPSHOT-all.jar marshalsec.jndi.RMIRe ...

  9. 【接口自动化】mock

    mock测试就是在测试过程中,对于某些不容易构造或者不容易获取的对象,用一个虚拟的对象来创建以便测试的测试方法. 1.在测试接口时使用mock #from unittest import mock d ...

  10. python 制作影视动画、电影特效工具

    一直觉得电影特效,动画制作这些都很什么,在google上搜索了下python开发电影特效的内容,发现了几个不错的软件,都支持python脚本开发. Houdini  Houdini (电影特效魔术师) ...