题意:支持两种操作:$1.$ 查询 $[l,r]$ 每个数字出现次数的 $mex$,$2.$ 单点修改某一位置的值.

这里复习一下带修改莫队.

普通的莫队中,以左端点所在块编号为第一关键字,右端点大小为第二关键字,在带修改莫队中每一个操作都有一个时间戳,那时间戳就是第三关键字.

可以将数字先离散化,开一个桶来维护每一种数字出现的次数.

然后在移动区间时就将对应数字删除/插入.

再维护一个当前时刻,表示当前数组的状态是第 $now$ 个修改进行后的状态.

将 $now$ 一直移动到和当前询问的时间戳吻合即可.

注意:在移动时间戳的时候要换一下修改的值. 假如说原来的修改是变成 $y$,而序列中的元素为 $x$,就要将修改的元素变成 $y$.

这样在下一次经过这个时间戳的时候就会将之前改动过的值再改回来.

排序函数一定要注意:

struct query
{
int l,r,id,t;
query(int l=0,int r=0):l(l),r(r){}
bool operator<(query b) const
{
return l/B==b.l/B?(r/B==b.r/B?t<b.t:r<b.r):l<b.l;
}
}q[N];

这里千万不能写错,否则整个时间复杂度就假了~

一般来说,带修改莫队中块的大小取在 $n^{0.6666}$ 来说是比较优的.

这道题中,你发现 $mex$ 的大小不超过 $\sqrt n$,所以我们可以直接暴力求.

code:

#include <bits/stdc++.h>
#define N 300005
#define ll long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int n,m,tot,opcnt,qcnt,B,now;
int a[N],A[N],output[N],cnt[N],mex[N];
struct query
{
int l,r,id,t;
query(int l=0,int r=0):l(l),r(r){}
bool operator<(query b) const
{
return l/B==b.l/B?(r/B==b.r/B?t<b.t:r<b.r):l<b.l;
}
}q[N];
struct change
{
int p,x;
change(int p=0,int x=0):p(p),x(x){}
}c[N];
void add(int num)
{
--mex[cnt[num]];
++mex[++cnt[num]];
}
void del(int num)
{
--mex[cnt[num]];
++mex[--cnt[num]];
}
void update(int id,int t)
{
if(c[t].p>=q[id].l&&c[t].p<=q[id].r)
{
del(a[c[t].p]);
add(c[t].x);
}
swap(c[t].x, a[c[t].p]);
}
int getans()
{
int i,j;
for(i=1;mex[i]>0;++i);
return i;
}
int main()
{
int i,j,l=2,r=1;
// setIO("input");
scanf("%d%d",&n,&m);
B=pow(n,0.6666);
for(i=1;i<=n;++i)
{
scanf("%d",&a[i]);
A[++tot]=a[i];
}
for(i=1;i<=m;++i)
{
int op,a,b;
scanf("%d%d%d",&op,&a,&b);
if(op==1)
{
++qcnt;
q[qcnt]=query(a,b);
q[qcnt].id=qcnt;
q[qcnt].t=opcnt;
}
else
{
++opcnt;
c[opcnt]=change(a,b);
A[++tot]=b;
}
}
sort(A+1,A+1+tot);
for(i=1;i<=n;++i) a[i]=lower_bound(A+1,A+1+tot,a[i])-A;
for(i=1;i<=opcnt;++i) c[i].x=lower_bound(A+1,A+1+tot,c[i].x)-A;
sort(q+1,q+1+qcnt);
for(i=1;i<=qcnt;++i)
{
for(;l>q[i].l;) add(a[--l]);
for(;r<q[i].r;) add(a[++r]);
for(;l<q[i].l;) del(a[l++]);
for(;r>q[i].r;) del(a[r--]);
for(;now<q[i].t;) update(i, ++now);
for(;now>q[i].t;) update(i, now--);
output[q[i].id]=getans();
}
for(i=1;i<=qcnt;++i) printf("%d\n",output[i]);
return 0;
}

  

CF940F Machine Learning 带修改莫队的更多相关文章

  1. Codeforces 940F Machine Learning 带修改莫队

    题目链接 题意 给定一个长度为\(n\)的数组\(a\),\(q\)个操作,操作分两种: 对于区间\([l,r]\),询问\(Mex\{c_0,c_1,c_2,⋯,c_{10^9}\}\),其中\(c ...

  2. BZOJ2120 数颜色(带修改莫队)

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  3. bzoj 2120 数颜色 带修改莫队

    带修改莫队,每次查询前调整修改 #include<cstdio> #include<iostream> #include<cstring> #include< ...

  4. BZOJ2120&2453数颜色——线段树套平衡树(treap)+set/带修改莫队

    题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会像你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔. 2 ...

  5. BZOJ.2453.维护队列([模板]带修改莫队)

    题目链接 带修改莫队: 普通莫队的扩展,依旧从[l,r,t]怎么转移到[l+1,r,t],[l,r+1,t],[l,r,t+1]去考虑 对于当前所在的区间维护一个vis[l~r]=1,在修改值时根据是 ...

  6. [BZOJ4129]Haruna’s Breakfast(树上带修改莫队)

    BZOJ3585,BZOJ2120,BZOJ3757三合一. 对于树上路径问题,树链剖分难以处理的时候,就用树上带修改莫队. 这里的MEX问题,使用BZOJ3585的分块方法,平衡了时间复杂度. 剩下 ...

  7. BZOJ.3052.[WC2013]糖果公园(树上莫队 带修改莫队)

    题目链接 BZOJ 当然哪都能交(都比在BZOJ交好),比如UOJ #58 //67376kb 27280ms //树上莫队+带修改莫队 模板题 #include <cmath> #inc ...

  8. BZOJ2120数颜色(带修改莫队)

    莫队算法是一种数据结构的根号复杂度替代品,主要应用在询问[l,r]到询问[l+1,r]和[l,r+1]这两个插入和删除操作复杂度都较低的情况下.具体思想是:如果把一个询问[l,r]看做平面上的点(l, ...

  9. 【BZOJ】4129: Haruna’s Breakfast 树分块+带修改莫队算法

    [题意]给定n个节点的树,每个节点有一个数字ai,m次操作:修改一个节点的数字,或询问一条树链的数字集合的mex值.n,m<=5*10^4,0<=ai<=10^9. [算法]树分块+ ...

随机推荐

  1. vi 使用系统剪贴板(clipboard)

    ref : https://www.jianshu.com/p/771b95e34293 http://www.bubuko.com/infodetail-469867.html 在vi中,如果编译时 ...

  2. 数据校验-hibernate-validator

    数据校验 在web开发时,对于请求参数,一般上都需要进行参数合法性校验的,原先的写法时一个个字段一个个去判断,这种方式太不通用了,所以java的JSR 303: Bean Validation规范就是 ...

  3. (二十七)JSP标签之核心标签

    一.诞生 JSTL标签库的使用是为弥补html标签的不足,规范自定义标签的使用而诞生的.使用JSLT标签的目的就是不希望在jsp页面中出现java逻辑代码. 二.JSTL 分类 核心标签(用得最多) ...

  4. 取代Ajax.BeginForm的ajax使用方法

    原文:取代Ajax.BeginForm的ajax使用方法 一.前提概要 Asp.net core中已经取消了Ajax.BeginForm,也不会计划出ajax tag helper,所以得利用插件jq ...

  5. java 框架-分布式服务框架1ZooKeeper

    https://www.cnblogs.com/felixzh/p/5869212.html Zookeeper的功能以及工作原理   1.ZooKeeper是什么?ZooKeeper是一个分布式的, ...

  6. mysql常用的存储引擎,MyISAM和InnoDB的对比

    Mysql有多种存储引擎,最常用的有MyISAM和InnoDB这两种,每一种类型的存储引擎都有自已的特点,可以结合项目中数据的使用场景来进行了哪种存储引擎合适. 1:查看mysql数据库支持的存储引擎 ...

  7. Hadoop错误:PipeMapRed.waitOutputThreads(): subprocess failed with code 1

    有一种原因是python文件中有语法或逻辑错误

  8. python Beautiful Soup 采集it books pdf,免费下载

    http://www.allitebooks.org/ 是我见过最良心的网站,所有书籍免费下载 周末无聊,尝试采集此站所有Pdf书籍. 采用技术 python3.5 Beautiful soup 分享 ...

  9. Windows工作原理

    Windows工作原理中心思想 Windows工作原理的中心思想就是“动态链接”概念.Windows自身带有一大套函数,应用程序就是通过调用这些函数来实现它的用户界面和在屏幕上显示文本与图形的.这些函 ...

  10. page页面403

    nginx 没有监听内网地址 必须要用域名访问