P4091 [HEOI2016/TJOI2016]求和(第二类斯特林数+NTT)
首先,因为在\(j>i\)的时候有\(S(i,j)=0\),所以原式可以写成$$Ans=\sum_{i=0}n\sum_{j=0}nS(i,j)\times 2^j\times j!$$
\]
根据第二类斯特林数的通项公式代入,有$$Ans=\sum_{j=0}n2j\times j!\sum_{i=0}n\sum_{k=0}j\frac{(-1)k}{k!}\frac{(j-k)i}{(j-k)!}$$
\]
根据等比数列求和公式,知\(\sum_{i=0}^np^i=\frac{p^n-1}{p-1}\),于是设\(f_i=\frac{(-1)^i}{i!},g_i=\frac{\sum_{k=0}^ni^k}{i!}\),则$$Ans=\sum_{j=0}n2j\times j!(f\times g)(j-k)$$
\(NTT\)计算即可
//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=5e5+5,P=998244353,Gi=332748118;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
int A[N],B[N],O[N],r[N],fac[N],inv[N];
int n,lim,l,res;
void NTT(int *A,int ty){
fp(i,0,lim-1)if(i<r[i])swap(A[i],A[r[i]]);
for(R int mid=1;mid<lim;mid<<=1){
R int I=(mid<<1),Wn=ksm(ty==1?3:Gi,(P-1)/I);O[0]=1;
fp(i,1,mid-1)O[i]=mul(O[i-1],Wn);
for(R int j=0;j<lim;j+=I)for(R int k=0;k<mid;++k){
int x=A[j+k],y=mul(O[k],A[j+k+mid]);
A[j+k]=add(x,y),A[j+k+mid]=dec(x,y);
}
}if(ty==-1)for(R int i=0,inv=ksm(lim,P-2);i<lim;++i)A[i]=mul(A[i],inv);
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d",&n);
fac[0]=inv[0]=1;fp(i,1,n)fac[i]=mul(fac[i-1],i);
inv[n]=ksm(fac[n],P-2);fd(i,n-1,1)inv[i]=mul(inv[i+1],i+1);
fp(i,0,n){
A[i]=i&1?P-inv[i]:inv[i];
if(i!=1)B[i]=mul(dec(ksm(i,n+1),1),mul(inv[i],ksm(dec(i,1),P-2)));
else B[i]=n+1;
}lim=1;while(lim<=n+n)lim<<=1,++l;
fp(i,0,lim-1)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
NTT(A,1),NTT(B,1);
fp(i,0,lim-1)A[i]=mul(A[i],B[i]);
NTT(A,-1);
for(R int i=0,j=1;i<=n;++i,j=add(j,j))res=add(res,mul(j,mul(fac[i],A[i])));
printf("%d\n",res);return 0;
}
P4091 [HEOI2016/TJOI2016]求和(第二类斯特林数+NTT)的更多相关文章
- BZOJ 4555 Luogu P4091 [HEOI2016/TJOI2016]求和 (第二类斯特林数)
题目链接 (luogu) https://www.luogu.org/problem/P4091 (bzoj) https://www.lydsy.com/JudgeOnline/problem.ph ...
- [HEOI2016/TJOI2016]求和(第二类斯特林数)
题目 [HEOI2016/TJOI2016]求和 关于斯特林数与反演的更多姿势\(\Longrightarrow\)点这里 做法 \[\begin{aligned}\\ Ans&=\sum\l ...
- [HEOI2016/TJOI2016]求和——第二类斯特林数
给你斯特林数就换成通项公式,给你k次方就换成斯特林数 考虑换成通项公式之后,组合数没有什么好的处理方法 直接拆开,消一消阶乘 然后就发现了(j-k)和k! 往NTT方向靠拢 然后大功告成 其实只要想到 ...
- 【BZOJ4555】【TJOI2016】【HEOI2016】求和 第二类斯特林数 NTT
题目大意 求\(f(n)=\sum_{i=0}^n\sum_{j=0}^i2^j\times j!\times S(i,j)\\\) 对\(998244353\)取模 \(n\leq 100000\) ...
- bzoj 4555 [Tjoi2016&Heoi2016] 求和 —— 第二类斯特林数+NTT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 关于第二类斯特林数:https://www.cnblogs.com/Wuweizhen ...
- BZOJ 4555:[TJOI2016&HEOI2016]求和(第二类斯特林数+NTT)
题目链接 \(Description\) 求 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj!\]对998244353取模后的结果. \(n<=10^5\) \(Sol ...
- BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】
题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + ...
- 【BZOJ4555】【TJOI2016】【HEOI2016】求和 (第二类斯特林数+NTT卷积)
Description 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: $$f(n)=\sum_{i=0}^n\sum_{j=0}^i S(i,j)\tim ...
- BZOJ5093 [Lydsy1711月赛]图的价值 【第二类斯特林数 + NTT】
题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 ...
随机推荐
- 【百度之星初赛A】路径交 LCA+线段树
[百度之星初赛A]路径交 Problem Description 给定一棵n个点的树,以及m条路径,每次询问第L条到第R条路径的交集部分的长度(如果一条边同时出现在2条路径上,那么它属于路径的交集). ...
- ASP.NET MVC EXTJS 通用主菜单框架
一.说明 首先我不知道定义的文章标题是不是准确,我这篇博文介绍的是一个通用的软件主菜单框架,界面布局用的是extjs,还是先上一个图吧. 软件主界面左侧菜单采用的风格是extjs的手风琴模式,需要注意 ...
- Use Apache HBase™ when you need random, realtime read/write access to your Big Data.
Apache HBase™ is the Hadoop database, a distributed, scalable, big data store. Use Apache HBase™ whe ...
- BZOJ3627: [JLOI2014]路径规划
BZOJ3627: [JLOI2014]路径规划 Description 相信大家都用过地图上的路径规划功能,只要输入起点终点就能找出一条最优路线.现在告诉你一张地图的信息,请你找出最优路径(即最短路 ...
- 收集Oracle数据库中的SQL基线信息(一)基础信息收集
Oracle数据库中的SQL基线信息,当数据库出现性能问题时,在业务无法提供相应业务信息时,通过对比SQL基线信息来查找SQL的变化. 查找数据库一天内运行次数大于5000次的sqlid select ...
- return;测试
一 没有return;,则会顺序执行到最后 <!DOCTYPE html> <html> <head> <meta charset="UTF-8&q ...
- Nginx中的惊群现象解决方法
*什么是惊群现象?Nginx中用了什么方法来避免这种问题的发生?本篇就解决这两个问题...→_→* 惊群现象的定义与危害 在Nginx中,每一个worker进程都是由master进程fork出来的.m ...
- PHP 导出office打开乱码
Response.AddHeader("Content-Disposition", "attachment; filename=" + file.Name); ...
- 什么是HTTP协议?
HTTP协议(超文本传输协议)位于TCP/IP协议栈的应用层.传输层采用面向连接的TCP HTTP请求详细过程
- uglifyjs2全局混淆
从git克隆uglifyjs2源码后,进入目录: npm link 编译并安装uglifyjs2成功,就可以直接调用uglifyjs命令了.但是在进行全局混淆时出现了问题,虽然指定了文件topvar. ...