题目

小 CC 非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数 PP ,当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对 PP 取模后的结果. 现在小 CC 有 nn 种体积不同的物品,第 ii 种占用体积为 V_iV

i

​ ,每种物品都有无限个. 他会进行 qq 次询问,每次询问给出重量 w_iw

i

​ ,你需要回答有多少种放入物品的方 案,能将一个初始为空的背包的重量变为 w_iw

i

​ .注意,两种方案被认为是不同的, 当且仅当放入物品的种类不同,而与每种物品放入的个数无关.不难发现总的方 案数为 2^n2

n

. 由于答案可能很大,你只需要输出答案对1e9+7取模的结果.

输入格式

从文件 knapsack.inknapsack.in 中读入数据. 第一行三个整数 nn , qq , PP ,含义见问题描述. 接下来一行 nn 个整数表示 V_iV

i

​ . 接下来一行 qq 个整数表示 w_iw

i

​ .

输出格式

输出到文件 knapsack.outknapsack.out 中. 输出 qq 行,每行一个整数表示答案.

输入样例

3 3 6

1 3 4

5 2 3

输出样例

5

6

6

提示

题解

考虑数论中的\(ax + by\)这样线性组合的形式,其只能表示\(gcd(a,b)\)的倍数

\(ax \mod P\)可以写成\(ax - Py\),也是\(a\)与\(P\)的线性组合

所以一个物品只能表示\(gcd(V[i],P)\)的倍数

我们只需要求出所有\(P\)的约数的方案数,对于询问\(W[i]\),我们只需要查询\(gcd(W[i],P)\)的倍数的方案数

设\(f[i][j]\)表示前\(i\)个数凑出以约数\(j\)为线性组合中的最小值的方案数【即\(j\)对其倍数的贡献】,转移即可

\(10^9\)以内约数最大不超过\(10^3\)个

建议别用STL

#include<iostream>
#include<cstdio>
#include<cmath>
#include<map>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
#define MAP map<int,int>
#define res register
using namespace std;
const int maxn = 1000005,maxm = 100005,INF = 1000000000,md = 1e9 + 7;
inline int read(){
res int out = 0,flag = 1; res char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
inline void write(int x){if (x >= 10) write(x / 10); putchar(x % 10 + '0');}
MAP f[2],Ans,A;
MAP::iterator it,IT;
int n,m,P;
inline int add2(int x,int y){x += y; if (x >= md) x -= md; return x;}
inline void add(int& x,int y){x += y; if (x >= md) x -= md;}
inline int gcd(int a,int b){return b ? gcd(b,a % b) : a;}
void init(){
int tmp,p = 1; f[0][P] = 1;
for (IT = A.begin(); IT != A.end(); IT++,p ^= 1){
f[p].clear();
for (it = f[p ^ 1].begin(); it != f[p ^ 1].end(); it++){
add(f[p][it->first],it->second);
tmp = gcd(IT->first,it->first);
add(f[p][tmp],1ll * add2(IT->second,md - 1) * it->second % md);
}
}
p ^= 1;
for (res int i = 1; 1ll * i * i <= P; i++) Ans[i] = Ans[P / i] = 0;
for (it = Ans.begin(); it != Ans.end(); it++)
for (IT = f[p].begin(); IT != f[p].end(); IT++)
if (it->first % IT->first == 0)
add(it->second,IT->second);
}
void solve(){
while (m--) write(Ans[gcd(read(),P)]),puts("");
}
int main(){
n = read(); m = read(); P = read();
int x;
for (res int i = 1; i <= n; i++){
x = gcd(read(),P);
if (!A.count(x)) A[x] = 2;
else A[x] = A[x] * 2 % md;
}
init();
solve();
return 0;
}

BZOJ5302 [HAOI2018]奇怪的背包 【数论 + dp】的更多相关文章

  1. BZOJ5302: [Haoi2018]奇怪的背包

    BZOJ5302: [Haoi2018]奇怪的背包 https://lydsy.com/JudgeOnline/problem.php?id=5302 分析: 方程\(\sum\limits_{i=1 ...

  2. [HAOI2018]奇怪的背包 (DP,数论)

    [HAOI2018]奇怪的背包 \(solution:\) 首先,这一道题目的描述很像完全背包,但它所说的背包总重量是在模P意义下的,所以肯定会用到数论.我们先分析一下,每一个物品可以放无数次,可以达 ...

  3. [BZOJ5302][HAOI2018]奇怪的背包(DP)

    由裴蜀定理得,一个集合S能得到w当且仅当gcd(S+{P})|w. 于是f[i][j]表示前i个物品gcd为j的方案数,发现gcd一定是P的因数,故总复杂度$O(n\sqrt{P}\log P)$(需 ...

  4. BZOJ5302 HAOI2018奇怪的背包(动态规划)

    由裴蜀定理,子集S有解当且仅当gcd(S,P)|w. 一个显然的dp是设f[i][j]为前i个数gcd为j的选取方案.注意到这里的gcd一定是P的约数,所以状态数是n√P的.然后可以通过这个得到gcd ...

  5. 【BZOJ5302】[HAOI2018]奇怪的背包(动态规划,容斥原理)

    [BZOJ5302][HAOI2018]奇怪的背包(动态规划,容斥原理) 题面 BZOJ 洛谷 题解 为啥泥萌做法和我都不一样啊 一个重量为\(V_i\)的物品,可以放出所有\(gcd(V_i,P)\ ...

  6. 洛谷 P4495 [HAOI2018]奇怪的背包 解题报告

    P4495 [HAOI2018]奇怪的背包 题目描述 小\(C\)非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数\(P\),当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对\(P ...

  7. 洛谷P4495 [HAOI2018]奇怪的背包(数论)

    题面 传送门 题解 好神仙的思路啊--orzyyb 因为不限次数,所以一个体积为\(V_i\)的物品可以表示出所有重量为\(\gcd(V_i,P)\)的倍数的物品,而所有物品的总和就是这些所有的\(\ ...

  8. haoi2018奇怪的背包题解

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=5302 对于一个物品,设它体积为v,那么,在背包参数为p的情况下,它能达到gcd(v,p ...

  9. [HAOI2018]奇怪的背包

    题目 暴力\(dp\)好有道理啊 于是我们来个反演吧 考虑一个体积序列\(\{v_1,v_2,...v_n\}\)能凑成\(w\)的条件 显然是 \[v_1x_1+v_2x_2+...+v_nx_n\ ...

随机推荐

  1. python_77_json与pickle序列化3

    #此方法:dump多次,而不可以load多次,只能load一次,否则会出错 只有序列化,无反序列化 import json info={ 'name':'Xue Jingjie', 'age':22, ...

  2. python_37_文件修改

    f=open('yesterday','r',encoding='utf-8') f_new=open('yesterday_update','w',encoding='utf-8') for lin ...

  3. python_24_test

    product_list=[ ('Iphone',5800), ('Mac Pro',9800), ('Bike',800), ('Watch',10600), ('Coffee',31), ('Py ...

  4. Ubuntu下安装pip3和Python的第三方库

    一.Ubuntu原有环境说明 无论是在服务器上面还是在我们自己的电脑上面,当我们成功安装了Ubuntu系统之后,系统一般情况下会自带Python2.x和Python3.x环境.比如我在自己的阿里云服务 ...

  5. PAT (Advanced Level) Practise - 1092. To Buy or Not to Buy (20)

    http://www.patest.cn/contests/pat-a-practise/1092 Eva would like to make a string of beads with her ...

  6. java设计模式——抽象工程模式

    一. 定义与类型 定义:抽象工厂模式提供一个创建一系列相关或相互依赖对象的接口,无须指定他们具体的类 类型:创建型 二. 适用场景 客户端不依赖于产品类实例如何备创建,实现等细节 创建一系列相关的产品 ...

  7. 绑定Ligerui中的ligerComboBox二级联动

    $.ajax({ url: "HRHandler.ashx", data: "bz=getDepartData", cache: false, type: &q ...

  8. RSA等非对称加密为什么要用公钥加密,而用私钥解密?

    1.RSA是不对称加密算法,它的公钥可能会被多人持有(公钥公钥,公开的密钥),而私钥只有一人拥有,例如支付宝开放平台,私钥只有支付宝公司持有,而公钥则是所有接入它API的公司都能得到.对于公钥加密的信 ...

  9. indexOf和contains查找的字符串是空字符,返回值是什么呢?

    一直以为indexOf方法查找的字符串如果不匹配返回值就是-1.今天发现空字符返回值是0.看源码原来如此,阴沟里翻船啊!

  10. U盘装系统之winpe中常用安装win7的方法和备份(2013-01-15-bd 写的日志迁移

    首先到网上去下一个制作U盘启动的的软件比如老毛桃.大白菜.电脑城制作u盘启动软件[其实他们的装机界面和工具那些都差不多], 我是用的老毛桃至于制作流程你可以看它的视频你往下拉就可以看见,或者看说明,自 ...